
SAT and the class NP
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas SAT and the class NP 1 / 15

Cook reductions

Throughout the course, we’ve been using reductions to come up with new
algorithms: rather than try to attack a problem directly, we try to express
it in terms of another problem we already know how to solve.

For example, we solved the circulation problem by reducing it to a
maximum flow problem. (And vertex capacities, rational weights, bipartite
matchings and so on and so on...)

Importantly, none of our reductions have depended on how we solve the
problem we’re reducing to. If we used Ford-Fulkerson to solve the
circulation problem instead of Edmonds-Karp, nothing would change but
the time analysis. Let’s make this idea formal.

Suppose we have a polynomial-time algorithm for problem X which calls a
polynomial-time algorithm for Y as a subroutine. Then regardless of
whether or not we actually have a polynomial-time algorithm for Y ,
we call this a Cook reduction from X to Y and write X ≤c Y .

John Lapinskas SAT and the class NP 2 / 15

Cook reductions

Throughout the course, we’ve been using reductions to come up with new
algorithms: rather than try to attack a problem directly, we try to express
it in terms of another problem we already know how to solve.

For example, we solved the circulation problem by reducing it to a
maximum flow problem. (And vertex capacities, rational weights, bipartite
matchings and so on and so on...)

Importantly, none of our reductions have depended on how we solve the
problem we’re reducing to. If we used Ford-Fulkerson to solve the
circulation problem instead of Edmonds-Karp, nothing would change but
the time analysis. Let’s make this idea formal.

Suppose we have a polynomial-time algorithm for problem X which calls a
polynomial-time algorithm for Y as a subroutine. Then regardless of
whether or not we actually have a polynomial-time algorithm for Y ,
we call this a Cook reduction from X to Y and write X ≤c Y .

John Lapinskas SAT and the class NP 2 / 15

Cook reductions

Throughout the course, we’ve been using reductions to come up with new
algorithms: rather than try to attack a problem directly, we try to express
it in terms of another problem we already know how to solve.

For example, we solved the circulation problem by reducing it to a
maximum flow problem. (And vertex capacities, rational weights, bipartite
matchings and so on and so on...)

Importantly, none of our reductions have depended on how we solve the
problem we’re reducing to. If we used Ford-Fulkerson to solve the
circulation problem instead of Edmonds-Karp, nothing would change but
the time analysis. Let’s make this idea formal.

Suppose we have a polynomial-time algorithm for problem X which calls a
polynomial-time algorithm for Y as a subroutine. Then regardless of
whether or not we actually have a polynomial-time algorithm for Y ,
we call this a Cook reduction from X to Y and write X ≤c Y .

John Lapinskas SAT and the class NP 2 / 15

Suppose we have a polynomial-time algorithm for problem X which calls a polynomial-time
algorithm for Y as a subroutine. Then regardless of whether or not we actually have a
polynomial-time algorithm for Y , we call this a Cook reduction from X to Y and write
X ≤c Y .

A little more formally: an oracle for Y is a black box which, given an
instance of problem Y , outputs a valid solution in O(1) time.

John Lapinskas SAT and the class NP 3 / 15

Suppose we have a polynomial-time algorithm for problem X which calls a polynomial-time
algorithm for Y as a subroutine. Then regardless of whether or not we actually have a
polynomial-time algorithm for Y , we call this a Cook reduction from X to Y and write
X ≤c Y .

A little more formally: an oracle for Y is a black box which, given an
instance of problem Y , outputs a valid solution in O(1) time.

An oracle is explicitly a cheat — we are washing our hands of any respon-
sibility for actually solving problem Y. Maybe a wizard did it.
Or a library function whose code is indistinguishable from wizardry.

John Lapinskas SAT and the class NP 3 / 15

Suppose we have a polynomial-time algorithm for problem X which calls a polynomial-time
algorithm for Y as a subroutine. Then regardless of whether or not we actually have a
polynomial-time algorithm for Y , we call this a Cook reduction from X to Y and write
X ≤c Y .

A little more formally: an oracle for Y is a black box which, given an
instance of problem Y , outputs a valid solution in O(1) time.

A Cook reduction from X to Y is an algorithm for problem X which,
given an input of size s, runs in time poly(s) while making poly(s) calls to
an oracle for Y whose input instances are all of size poly(s).

John Lapinskas SAT and the class NP 3 / 15

Suppose we have a polynomial-time algorithm for problem X which calls a polynomial-time
algorithm for Y as a subroutine. Then regardless of whether or not we actually have a
polynomial-time algorithm for Y , we call this a Cook reduction from X to Y and write
X ≤c Y .

A little more formally: an oracle for Y is a black box which, given an
instance of problem Y , outputs a valid solution in O(1) time.

A Cook reduction from X to Y is an algorithm for problem X which,
given an input of size s, runs in time poly(s) while making poly(s) calls to
an oracle for Y whose input instances are all of size poly(s).

The point of the definition is: Given a Cook reduction from X to Y , and
a polynomial-time algorithm for Y, we get a polynomial-time algorithm for
X . We just simulate the oracle using our algorithm for Y .

(The “correct” definition is more complicated, involving so-called oracle
Turing machines, but the one above is good enough for our purposes.)

John Lapinskas SAT and the class NP 3 / 15

An oracle for Y is a black box which, given an instance of problem Y , outputs a valid solution
in O(1) time.

A Cook reduction from X to Y is a poly-time algorithm for problem X which, given an input of
size s, makes poly(s) calls to an oracle for Y whose input instances are all of size poly(s). We
write X ≤c Y .

If X ≤c Y , then poly-time algorithm for Y ⇒ poly-time algorithm for X .

As the notation suggests, if X ≤c Y and Y ≤c Z then X ≤c Z , so we can
build up chains of reductions. For example:

Finding a maximum matching
in a bipartite graph

≤c Finding a maximum flow

≤c Solving a linear program.

As this example shows, Cook reductions don’t always give the best
algorithms! In making the definition so general, we have lost the ability to
constrain the running time beyond “polynomial”.

“Polynomial” can hide a multitude of sins...

John Lapinskas SAT and the class NP 4 / 15

An oracle for Y is a black box which, given an instance of problem Y , outputs a valid solution
in O(1) time.

A Cook reduction from X to Y is a poly-time algorithm for problem X which, given an input of
size s, makes poly(s) calls to an oracle for Y whose input instances are all of size poly(s). We
write X ≤c Y .

If X ≤c Y , then poly-time algorithm for Y ⇒ poly-time algorithm for X .

As the notation suggests, if X ≤c Y and Y ≤c Z then X ≤c Z , so we can
build up chains of reductions. For example:

Finding a maximum matching
in a bipartite graph

≤c Finding a maximum flow

≤c Solving a linear program.

As this example shows, Cook reductions don’t always give the best
algorithms! In making the definition so general, we have lost the ability to
constrain the running time beyond “polynomial”.

“Polynomial” can hide a multitude of sins...

John Lapinskas SAT and the class NP 4 / 15

An oracle for Y is a black box which, given an instance of problem Y , outputs a valid solution
in O(1) time.

A Cook reduction from X to Y is a poly-time algorithm for problem X which, given an input of
size s, makes poly(s) calls to an oracle for Y whose input instances are all of size poly(s). We
write X ≤c Y .

If X ≤c Y , then poly-time algorithm for Y ⇒ poly-time algorithm for X .

As the notation suggests, if X ≤c Y and Y ≤c Z then X ≤c Z , so we can
build up chains of reductions. For example:

Finding a maximum matching
in a bipartite graph

≤c Finding a maximum flow

≤c Solving a linear program.

As this example shows, Cook reductions don’t always give the best
algorithms! In making the definition so general, we have lost the ability to
constrain the running time beyond “polynomial”.

“Polynomial” can hide a multitude of sins...

John Lapinskas SAT and the class NP 4 / 15

An oracle for Y is a black box which, given an instance of problem Y , outputs a valid solution
in O(1) time.

A Cook reduction from X to Y is a poly-time algorithm for problem X which, given an input of
size s, makes poly(s) calls to an oracle for Y whose input instances are all of size poly(s). We
write X ≤c Y .

If X ≤c Y , then poly-time algorithm for Y ⇒ poly-time algorithm for X .

As the notation suggests, if X ≤c Y and Y ≤c Z then X ≤c Z , so we can
build up chains of reductions. For example:

Finding a maximum matching
in a bipartite graph

≤c Finding a maximum flow

≤c Solving a linear program.

As this example shows, Cook reductions don’t always give the best
algorithms! In making the definition so general, we have lost the ability to
constrain the running time beyond “polynomial”.

“Polynomial” can hide a multitude of sins...

John Lapinskas SAT and the class NP 4 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

To be clear, this was a genuinely good paper! Just not exactly practical.

John Lapinskas SAT and the class NP 5 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

The running time? O(n).

To be clear, this was a genuinely good paper! Just not exactly practical.

John Lapinskas SAT and the class NP 5 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

The running time? O(n). No, wait, that’s not right.

To be clear, this was a genuinely good paper! Just not exactly practical.

John Lapinskas SAT and the class NP 5 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

The running time? O(n10).

To be clear, this was a genuinely good paper! Just not exactly practical.

John Lapinskas SAT and the class NP 5 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

The running time? O(n10). No, a little more...

To be clear, this was a genuinely good paper! Just not exactly practical.

John Lapinskas SAT and the class NP 5 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

The running time? O(n10
100
). There we go.

To be clear, this was a genuinely good paper! Just not exactly practical.

John Lapinskas SAT and the class NP 5 / 15

We are all sinners, the end is nigh

SODA is one of the best conferences in algorithm design. I work in the
field myself, and when I get a paper in there it’s a very good day.

In 2013, they published a paper giving a new polynomial-time
approximation algorithm for the “max bisection” problem by Austrin,
Benabbas, and Georgiou, with better error than any previously known.

The running time? O(n10
100
). There we go.

To be clear, this was a genuinely good paper! Just not exactly practical.
John Lapinskas SAT and the class NP 5 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε. It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε. It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε. It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε. It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε.

It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε. It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Even algorithms with reasonable exponents can hide horrors.

There’s a very powerful result for finding subgraphs in large graphs called
the Szemerédi regularity lemma. So some graph algorithms start by saying
“suppose the input is large enough that we can apply the regularity lemma,
and otherwise solve by brute force”, which adds a mere O(1) overhead.

The lemma is stated in terms of an approximation parameter ε. The
smaller ε is, the more useful the result. Typically you need ε ≤ 1/100 or so.

So how large does the graph have to be in terms of ε? 1/ε vertices,
perhaps? Maybe 21/ε? That would be unpleasant to deal with.

Well, the good news is that it’s not 21/ε. It’s 22
22

··
·

, with 1/ε5 twos.

For comparison, there are about 2265 atoms in the universe. So it’s
technically O(1) overhead, but on any conceivable actual input, the
algorithm is “solve by brute force”...

The point is: if you’re trying to find an algorithm for X , then just
knowing X ≤c Y doesn’t help you much. So why use the formalism?

John Lapinskas SAT and the class NP 6 / 15

Weakness as a strength: using reductions to prove hardness

We introduced these thinking: “If X ≤c Y , and we have a polynomial-time
algorithm for Y , then we can get a polynomial-time algorithm for X .”

But this is equivalent to: “If X ≤c Y , and there is no polynomial-time
algorithm for X , then there is no polynomial-time algorithm for Y .”

And this is incredibly useful in designing algorithms!

If you know the world’s brightest minds have tried to solve problem X for
decades and failed, and X reduces to your problem, then you can go back
to the drawing board now rather than trying for a decade yourself first.

And the really nice thing is: most of the time, from a practical
perspective, there’s only one problem X that matters.

John Lapinskas SAT and the class NP 7 / 15

Weakness as a strength: using reductions to prove hardness

We introduced these thinking: “If X ≤c Y , and we have a polynomial-time
algorithm for Y , then we can get a polynomial-time algorithm for X .”

But this is equivalent to: “If X ≤c Y , and there is no polynomial-time
algorithm for X , then there is no polynomial-time algorithm for Y .”

And this is incredibly useful in designing algorithms!

If you know the world’s brightest minds have tried to solve problem X for
decades and failed, and X reduces to your problem, then you can go back
to the drawing board now rather than trying for a decade yourself first.

And the really nice thing is: most of the time, from a practical
perspective, there’s only one problem X that matters.

John Lapinskas SAT and the class NP 7 / 15

Weakness as a strength: using reductions to prove hardness

We introduced these thinking: “If X ≤c Y , and we have a polynomial-time
algorithm for Y , then we can get a polynomial-time algorithm for X .”

But this is equivalent to: “If X ≤c Y , and there is no polynomial-time
algorithm for X , then there is no polynomial-time algorithm for Y .”

And this is incredibly useful in designing algorithms!

If you know the world’s brightest minds have tried to solve problem X for
decades and failed, and X reduces to your problem, then you can go back
to the drawing board now rather than trying for a decade yourself first.

And the really nice thing is: most of the time, from a practical
perspective, there’s only one problem X that matters.

John Lapinskas SAT and the class NP 7 / 15

Weakness as a strength: using reductions to prove hardness

We introduced these thinking: “If X ≤c Y , and we have a polynomial-time
algorithm for Y , then we can get a polynomial-time algorithm for X .”

But this is equivalent to: “If X ≤c Y , and there is no polynomial-time
algorithm for X , then there is no polynomial-time algorithm for Y .”

And this is incredibly useful in designing algorithms!

If you know the world’s brightest minds have tried to solve problem X for
decades and failed, and X reduces to your problem, then you can go back
to the drawing board now rather than trying for a decade yourself first.

And the really nice thing is: most of the time, from a practical
perspective, there’s only one problem X that matters.

John Lapinskas SAT and the class NP 7 / 15

Decision problems versus search problems

We focus on decision problems, where the desired answer is Yes or No:

“Does the input graph contain a matching of size at least k?”

“Does the input flow network contain a flow of value at least k?”

“Does the input linear program have a solution of value at least k?”

“Is the input a composite number?”

Why focus on these rather than just finding the matching? Because:

We are interested in proving problems are hard, not easy — if it’s hard
to decide whether something exists, then it’s certainly hard to find it!

Decision problems have a simpler theory associated with them.

It’s rare for the decision problem to be easy while the search problem
is hard, and often there are easy Cook reductions between them. (See
the problem sheet for some examples.)

John Lapinskas SAT and the class NP 8 / 15

Decision problems versus search problems

We focus on decision problems, where the desired answer is Yes or No:

“Does the input graph contain a matching of size at least k?”

“Does the input flow network contain a flow of value at least k?”

“Does the input linear program have a solution of value at least k?”

“Is the input a composite number?”

Why focus on these rather than just finding the matching? Because:

We are interested in proving problems are hard, not easy — if it’s hard
to decide whether something exists, then it’s certainly hard to find it!

Decision problems have a simpler theory associated with them.

It’s rare for the decision problem to be easy while the search problem
is hard, and often there are easy Cook reductions between them. (See
the problem sheet for some examples.)

John Lapinskas SAT and the class NP 8 / 15

Decision problems versus search problems

We focus on decision problems, where the desired answer is Yes or No:

“Does the input graph contain a matching of size at least k?”

“Does the input flow network contain a flow of value at least k?”

“Does the input linear program have a solution of value at least k?”

“Is the input a composite number?”

Why focus on these rather than just finding the matching? Because:

We are interested in proving problems are hard, not easy — if it’s hard
to decide whether something exists, then it’s certainly hard to find it!

Decision problems have a simpler theory associated with them.

It’s rare for the decision problem to be easy while the search problem
is hard, and often there are easy Cook reductions between them. (See
the problem sheet for some examples.)

John Lapinskas SAT and the class NP 8 / 15

Decision problems versus search problems

We focus on decision problems, where the desired answer is Yes or No:

“Does the input graph contain a matching of size at least k?”

“Does the input flow network contain a flow of value at least k?”

“Does the input linear program have a solution of value at least k?”

“Is the input a composite number?”

Why focus on these rather than just finding the matching? Because:

We are interested in proving problems are hard, not easy — if it’s hard
to decide whether something exists, then it’s certainly hard to find it!

Decision problems have a simpler theory associated with them.

It’s rare for the decision problem to be easy while the search problem
is hard, and often there are easy Cook reductions between them. (See
the problem sheet for some examples.)

John Lapinskas SAT and the class NP 8 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

“Does the input graph contain a matching of size at least k?” is in
NP, since we can easily verify that a collection of edges belongs to the
input graph and is a matching.

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

“Does the input flow network contain a flow of value at least k?” is
in NP, since we can easily verify that a function is a valid flow with
value at least k .

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

“Does the input linear program have a solution of value at least k?”
is in NP, since we can easily verify that a solution is feasible and has
value at least k .

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

“Is the input a composite number?” is in NP, since given an input x
and a pair of integers y and z , we can easily verify that x = yz and
y , z > 1.

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

The class NP

Within decision problems, we will focus on problems where we can easily
verify a Yes answer.

Formally, NP is the class of all decision problems X with the following
property: There is a polynomial-time algorithm Verify such that if and
only if x is a Yes instance of X , then there is some bit string w (called a
witness) with Verify(x ,w) = Yes.

Think of these problems as looking for a needle in a haystack: you might
not be able to find the needle, but you know it when you see it. E.g.:

“Is the input a composite number?” is in NP, since given an input x
and a pair of integers y and z , we can easily verify that x = yz and
y , z > 1.

Almost every decision problem you run into in the real world can be
formulated as a problem in NP.

We will reduce the whole of NP to a single problem!

John Lapinskas SAT and the class NP 9 / 15

Key properties of NP

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Remark 1: The definition of NP is asymmetric, and does not include
problems where we can easily verify No answers but not Yes answers. For
example, it is not clear that “Is the input a prime number?” is in NP.

For what we’re doing now this is just a technical quirk, since we can
always just rephrase the question. Later it will be very important!

Remark 2: We define P to be the class of all decision problems which
have a polynomial-time algorithm. Then P ⊆ NP. Why?

Because Verify can simply ignore w , solve x , and return the solution.
(So “is the input a prime number?” actually is in NP.)

John Lapinskas SAT and the class NP 10 / 15

Key properties of NP

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Remark 1: The definition of NP is asymmetric, and does not include
problems where we can easily verify No answers but not Yes answers. For
example, it is not clear that “Is the input a prime number?” is in NP.

For what we’re doing now this is just a technical quirk, since we can
always just rephrase the question. Later it will be very important!

Remark 2: We define P to be the class of all decision problems which
have a polynomial-time algorithm. Then P ⊆ NP. Why?

Because Verify can simply ignore w , solve x , and return the solution.
(So “is the input a prime number?” actually is in NP.)

John Lapinskas SAT and the class NP 10 / 15

Key properties of NP

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Remark 1: The definition of NP is asymmetric, and does not include
problems where we can easily verify No answers but not Yes answers. For
example, it is not clear that “Is the input a prime number?” is in NP.

For what we’re doing now this is just a technical quirk, since we can
always just rephrase the question. Later it will be very important!

Remark 2: We define P to be the class of all decision problems which
have a polynomial-time algorithm. Then P ⊆ NP. Why?

Because Verify can simply ignore w , solve x , and return the solution.
(So “is the input a prime number?” actually is in NP.)

John Lapinskas SAT and the class NP 10 / 15

Key properties of NP

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Remark 1: The definition of NP is asymmetric, and does not include
problems where we can easily verify No answers but not Yes answers. For
example, it is not clear that “Is the input a prime number?” is in NP.

For what we’re doing now this is just a technical quirk, since we can
always just rephrase the question. Later it will be very important!

Remark 2: We define P to be the class of all decision problems which
have a polynomial-time algorithm. Then P ⊆ NP. Why?

Because Verify can simply ignore w , solve x , and return the solution.
(So “is the input a prime number?” actually is in NP.)

John Lapinskas SAT and the class NP 10 / 15

Recap of propositional logic

We write Boolean OR as ∨, Boolean AND as ∧, and Boolean NOT as ¬.

A literal is either a Boolean variable x or its negation ¬x .

An OR clause is an OR of distinct literals, e.g. x ∨ (¬y) ∨ z .

A formula in conjunctive normal form (CNF) is an AND of OR clauses,
such as x ∧ (y ∨ z) ∧ (¬x ∨ ¬z). Any formula can be expressed in CNF.

An assignment for a formula is a map from its variables to the set
{True, False}, and the formula’s truth value under that assignment is
calculated as you would expect. For example, under the assignment
x 7→ True and y 7→ False, the truth value of x ∧ (¬x ∨ y) is

True ∧ (¬True ∨ False) = True ∧ (False ∨ False)

= True ∧ False = False.

We say a propositional formula is satisfiable if there’s some assignment (a
satisfying assignment) that makes it true, and unsatisfiable otherwise.

John Lapinskas SAT and the class NP 11 / 15

Recap of propositional logic

We write Boolean OR as ∨, Boolean AND as ∧, and Boolean NOT as ¬.

A literal is either a Boolean variable x or its negation ¬x .

An OR clause is an OR of distinct literals, e.g. x ∨ (¬y) ∨ z .

A formula in conjunctive normal form (CNF) is an AND of OR clauses,
such as x ∧ (y ∨ z) ∧ (¬x ∨ ¬z). Any formula can be expressed in CNF.

An assignment for a formula is a map from its variables to the set
{True, False}, and the formula’s truth value under that assignment is
calculated as you would expect. For example, under the assignment
x 7→ True and y 7→ False, the truth value of x ∧ (¬x ∨ y) is

True ∧ (¬True ∨ False) = True ∧ (False ∨ False)

= True ∧ False = False.

We say a propositional formula is satisfiable if there’s some assignment (a
satisfying assignment) that makes it true, and unsatisfiable otherwise.

John Lapinskas SAT and the class NP 11 / 15

Recap of propositional logic

We write Boolean OR as ∨, Boolean AND as ∧, and Boolean NOT as ¬.

A literal is either a Boolean variable x or its negation ¬x .

An OR clause is an OR of distinct literals, e.g. x ∨ (¬y) ∨ z .

A formula in conjunctive normal form (CNF) is an AND of OR clauses,
such as x ∧ (y ∨ z) ∧ (¬x ∨ ¬z). Any formula can be expressed in CNF.

An assignment for a formula is a map from its variables to the set
{True, False}, and the formula’s truth value under that assignment is
calculated as you would expect. For example, under the assignment
x 7→ True and y 7→ False, the truth value of x ∧ (¬x ∨ y) is

True ∧ (¬True ∨ False) = True ∧ (False ∨ False)

= True ∧ False = False.

We say a propositional formula is satisfiable if there’s some assignment (a
satisfying assignment) that makes it true, and unsatisfiable otherwise.

John Lapinskas SAT and the class NP 11 / 15

Recap of propositional logic

We write Boolean OR as ∨, Boolean AND as ∧, and Boolean NOT as ¬.

A literal is either a Boolean variable x or its negation ¬x .

An OR clause is an OR of distinct literals, e.g. x ∨ (¬y) ∨ z .

A formula in conjunctive normal form (CNF) is an AND of OR clauses,
such as x ∧ (y ∨ z) ∧ (¬x ∨ ¬z). Any formula can be expressed in CNF.

An assignment for a formula is a map from its variables to the set
{True, False}, and the formula’s truth value under that assignment is
calculated as you would expect. For example, under the assignment
x 7→ True and y 7→ False, the truth value of x ∧ (¬x ∨ y) is

True ∧ (¬True ∨ False) = True ∧ (False ∨ False)

= True ∧ False = False.

We say a propositional formula is satisfiable if there’s some assignment (a
satisfying assignment) that makes it true, and unsatisfiable otherwise.

John Lapinskas SAT and the class NP 11 / 15

SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of distinct literals, e.g.
x ∨ (¬y) ∨ z. A formula in conjunctive normal form (CNF) is an AND of OR clauses, such as
x ∧ (y ∨ z) ∧ (¬x ∨ ¬z).

We say a propositional formula is satisfiable if there’s some assignment (a satisfying
assignment) that makes it true, and unsatisfiable otherwise.

The SAT problem asks: “Is the input CNF formula satisfiable?”

This is in NP, since we can quickly check whether a given assignment
makes the formula true. Conversely...

Cook-Levin Theorem: Every problem in NP is Cook-reducible to SAT.

So if there’s a polynomial algorithm for SAT, then there’s a polynomial
algorithm for every problem in NP — that is, P = NP!

John Lapinskas SAT and the class NP 12 / 15

SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of distinct literals, e.g.
x ∨ (¬y) ∨ z. A formula in conjunctive normal form (CNF) is an AND of OR clauses, such as
x ∧ (y ∨ z) ∧ (¬x ∨ ¬z).

We say a propositional formula is satisfiable if there’s some assignment (a satisfying
assignment) that makes it true, and unsatisfiable otherwise.

The SAT problem asks: “Is the input CNF formula satisfiable?”

This is in NP, since we can quickly check whether a given assignment
makes the formula true. Conversely...

Cook-Levin Theorem: Every problem in NP is Cook-reducible to SAT.

So if there’s a polynomial algorithm for SAT, then there’s a polynomial
algorithm for every problem in NP — that is, P = NP!

John Lapinskas SAT and the class NP 12 / 15

SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of distinct literals, e.g.
x ∨ (¬y) ∨ z. A formula in conjunctive normal form (CNF) is an AND of OR clauses, such as
x ∧ (y ∨ z) ∧ (¬x ∨ ¬z).

We say a propositional formula is satisfiable if there’s some assignment (a satisfying
assignment) that makes it true, and unsatisfiable otherwise.

The SAT problem asks: “Is the input CNF formula satisfiable?”

This is in NP, since we can quickly check whether a given assignment
makes the formula true. Conversely...

Cook-Levin Theorem: Every problem in NP is Cook-reducible to SAT.

So if there’s a polynomial algorithm for SAT, then there’s a polynomial
algorithm for every problem in NP — that is, P = NP!

John Lapinskas SAT and the class NP 12 / 15

SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of distinct literals, e.g.
x ∨ (¬y) ∨ z. A formula in conjunctive normal form (CNF) is an AND of OR clauses, such as
x ∧ (y ∨ z) ∧ (¬x ∨ ¬z).

We say a propositional formula is satisfiable if there’s some assignment (a satisfying
assignment) that makes it true, and unsatisfiable otherwise.

The SAT problem asks: “Is the input CNF formula satisfiable?”

This is in NP, since we can quickly check whether a given assignment
makes the formula true. Conversely...

Cook-Levin Theorem: Every problem in NP is Cook-reducible to SAT.

So if there’s a polynomial algorithm for SAT, then there’s a polynomial
algorithm for every problem in NP — that is, P = NP!

John Lapinskas SAT and the class NP 12 / 15

SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of distinct literals, e.g.
x ∨ (¬y) ∨ z. A formula in conjunctive normal form (CNF) is an AND of OR clauses, such as
x ∧ (y ∨ z) ∧ (¬x ∨ ¬z).

We say a propositional formula is satisfiable if there’s some assignment (a satisfying
assignment) that makes it true, and unsatisfiable otherwise.

The SAT problem asks: “Is the input CNF formula satisfiable?”

This is in NP, since we can quickly check whether a given assignment
makes the formula true. Conversely...

Cook-Levin Theorem: Every problem in NP is Cook-reducible to SAT.

So if there’s a polynomial algorithm for SAT, then there’s a polynomial
algorithm for every problem in NP — that is, P = NP!

John Lapinskas SAT and the class NP 12 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.
If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.
If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.
If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.
If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.

If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.
If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

NP-completeness

P is the class of all decision problems with a polynomial-time algorithm.

NP is the class of all decision problems X with a polynomial-time algorithm Verify such that if
x is a Yes instance of X , then there is some bit string w (a witness) with Verify(x ,w) = Yes.

Cook-Levin Theorem: Any problem in NP is Cook-Reducible to SAT.

We say a problem is NP-hard∗ if any problem in NP is Cook-reducible to
it, and NP-complete∗ if it is also in NP. So SAT is NP-complete.
* There are two definitions of these terms; I’ll cover the other one next week.

Important: By the Cook-Levin Theorem, a problem is NP-hard if and
only if SAT reduces to it! This is normally how we prove NP-hardness.

The Million Dollar Conjecture: P ̸= NP.

If this is true, then no NP-hard problem has a polynomial-time algorithm.
If it is false, then every NP-complete problem has a poly-time algorithm.

A proof either way is worth $1,000,000 from the Clay Foundation...

John Lapinskas SAT and the class NP 13 / 15

What does this mean in practice?

If a problem is NP-hard, there’s probably no poly-time algorithm for it.

Even if there is a poly-time algorithm, you won’t be able to find it.

No, really. Please don’t try. I get too many crank emails already.

In practice, almost every problem either has a poly-time algorithm or
is NP-hard.

Technically, if P ̸= NP then there are infinitely many complexity classes
between them, but they’re really weird and artificial...

So proving your problem is NP-hard means it’s a dead end — you won’t
be able to solve it, so you need to find an alternative. (More next week...)

The good news is: this means you spent a couple of hours writing a
hardness proof rather than weeks or months failing to write an algorithm!

NP-hardness can also be a good way of ruling out approaches: “If this
worked for problem X, then it would also work for [insert NP-hard problem
here], so it’s not going to work.”

John Lapinskas SAT and the class NP 14 / 15

What does this mean in practice?

If a problem is NP-hard, there’s probably no poly-time algorithm for it.

Even if there is a poly-time algorithm, you won’t be able to find it.

No, really. Please don’t try. I get too many crank emails already.

In practice, almost every problem either has a poly-time algorithm or
is NP-hard.

Technically, if P ̸= NP then there are infinitely many complexity classes
between them, but they’re really weird and artificial...

So proving your problem is NP-hard means it’s a dead end — you won’t
be able to solve it, so you need to find an alternative. (More next week...)

The good news is: this means you spent a couple of hours writing a
hardness proof rather than weeks or months failing to write an algorithm!

NP-hardness can also be a good way of ruling out approaches: “If this
worked for problem X, then it would also work for [insert NP-hard problem
here], so it’s not going to work.”

John Lapinskas SAT and the class NP 14 / 15

What does this mean in practice?

If a problem is NP-hard, there’s probably no poly-time algorithm for it.

Even if there is a poly-time algorithm, you won’t be able to find it.

No, really. Please don’t try. I get too many crank emails already.

In practice, almost every problem either has a poly-time algorithm or
is NP-hard.

Technically, if P ̸= NP then there are infinitely many complexity classes
between them, but they’re really weird and artificial...

So proving your problem is NP-hard means it’s a dead end — you won’t
be able to solve it, so you need to find an alternative. (More next week...)

The good news is: this means you spent a couple of hours writing a
hardness proof rather than weeks or months failing to write an algorithm!

NP-hardness can also be a good way of ruling out approaches: “If this
worked for problem X, then it would also work for [insert NP-hard problem
here], so it’s not going to work.”

John Lapinskas SAT and the class NP 14 / 15

What does this mean in practice?

If a problem is NP-hard, there’s probably no poly-time algorithm for it.

Even if there is a poly-time algorithm, you won’t be able to find it.

No, really. Please don’t try. I get too many crank emails already.

In practice, almost every problem either has a poly-time algorithm or
is NP-hard.

Technically, if P ̸= NP then there are infinitely many complexity classes
between them, but they’re really weird and artificial...

So proving your problem is NP-hard means it’s a dead end — you won’t
be able to solve it, so you need to find an alternative. (More next week...)

The good news is: this means you spent a couple of hours writing a
hardness proof rather than weeks or months failing to write an algorithm!

NP-hardness can also be a good way of ruling out approaches: “If this
worked for problem X, then it would also work for [insert NP-hard problem
here], so it’s not going to work.”

John Lapinskas SAT and the class NP 14 / 15

What does this mean in practice?

If a problem is NP-hard, there’s probably no poly-time algorithm for it.

Even if there is a poly-time algorithm, you won’t be able to find it.

No, really. Please don’t try. I get too many crank emails already.

In practice, almost every problem either has a poly-time algorithm or
is NP-hard.

Technically, if P ̸= NP then there are infinitely many complexity classes
between them, but they’re really weird and artificial...

So proving your problem is NP-hard means it’s a dead end — you won’t
be able to solve it, so you need to find an alternative. (More next week...)

The good news is: this means you spent a couple of hours writing a
hardness proof rather than weeks or months failing to write an algorithm!

NP-hardness can also be a good way of ruling out approaches: “If this
worked for problem X, then it would also work for [insert NP-hard problem
here], so it’s not going to work.”

John Lapinskas SAT and the class NP 14 / 15

What if P = NP?

If P = NP, then we’re very unlikely to get a practical algorithm.
There will be shenanigans. Possibly even tomfoolery.

But it would still be fascinating from a theory viewpoint. Why? Because it
would say: as long as we can recognise a solution when we see it, we can
always do better than näıve search. That’s really counterintuitive!

For example, this problem is NP-complete: “Given a mathematical
statement S and k ≥ 1, is there a proof of S in k lines or fewer?”

If P = NP, so there’s a polynomial-time algorithm for that problem, then
what does that mean for the way we think about mathematics?

John Lapinskas SAT and the class NP 15 / 15

What if P = NP?

If P = NP, then we’re very unlikely to get a practical algorithm.
There will be shenanigans. Possibly even tomfoolery.

But it would still be fascinating from a theory viewpoint. Why? Because it
would say: as long as we can recognise a solution when we see it, we can
always do better than näıve search. That’s really counterintuitive!

For example, this problem is NP-complete: “Given a mathematical
statement S and k ≥ 1, is there a proof of S in k lines or fewer?”

If P = NP, so there’s a polynomial-time algorithm for that problem, then
what does that mean for the way we think about mathematics?

John Lapinskas SAT and the class NP 15 / 15

What if P = NP?

If P = NP, then we’re very unlikely to get a practical algorithm.
There will be shenanigans. Possibly even tomfoolery.

But it would still be fascinating from a theory viewpoint. Why? Because it
would say: as long as we can recognise a solution when we see it, we can
always do better than näıve search. That’s really counterintuitive!

For example, this problem is NP-complete: “Given a mathematical
statement S and k ≥ 1, is there a proof of S in k lines or fewer?”

If P = NP, so there’s a polynomial-time algorithm for that problem, then
what does that mean for the way we think about mathematics?

John Lapinskas SAT and the class NP 15 / 15

What if P = NP?

If P = NP, then we’re very unlikely to get a practical algorithm.
There will be shenanigans. Possibly even tomfoolery.

But it would still be fascinating from a theory viewpoint. Why? Because it
would say: as long as we can recognise a solution when we see it, we can
always do better than näıve search. That’s really counterintuitive!

For example, this problem is NP-complete: “Given a mathematical
statement S and k ≥ 1, is there a proof of S in k lines or fewer?”

If P = NP, so there’s a polynomial-time algorithm for that problem, then
what does that mean for the way we think about mathematics?

John Lapinskas SAT and the class NP 15 / 15

