NP-completeness of 3-SAT COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation $\neg x$. An OR clause is an OR of literals. A CNF formula is an AND of OR clauses. The SAT problem asks: "Is the input CNF formula satisfiable?"

An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation $\neg x$. An OR clause is an OR of literals. A CNF formula is an AND of OR clauses. The SAT problem asks: "Is the input CNF formula satisfiable?"

We first give a special case of SAT which is still NP-complete. This will make it much easier to prove other problems are NP-hard!

An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation $\neg x$. An OR clause is an OR of literals. A CNF formula is an AND of OR clauses. The SAT problem asks: "Is the input CNF formula satisfiable?"

We first give a special case of SAT which is still NP-complete. This will make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k. For example,

$$
(x \vee \neg y \vee z) \wedge(a \vee x \vee z) \text { has width } 3 .
$$

An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation $\neg x$. An OR clause is an OR of literals. A CNF formula is an AND of OR clauses. The SAT problem asks: "Is the input CNF formula satisfiable?"

We first give a special case of SAT which is still NP-complete. This will make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k. For example,

$$
(x \vee \neg y \vee z) \wedge(a \vee x \vee z) \text { has width } 3
$$

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete.

An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation $\neg x$. An OR clause is an OR of literals. A CNF formula is an AND of OR clauses. The SAT problem asks: "Is the input CNF formula satisfiable?"

We first give a special case of SAT which is still NP-complete. This will make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k. For example,

$$
(x \vee \neg y \vee z) \wedge(a \vee x \vee z) \text { has width } 3
$$

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete.
Certainly 3-SAT \in NP, but our proof that SAT is NP-hard breaks for 3-SAT. So to prove NP-hardness, we will reduce SAT to 3-SAT; the result then follows since SAT is NP-hard.

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let F be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, then apply our 3-SAT oracle to F^{\prime}.

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let F be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, then apply our 3-SAT oracle to F^{\prime}.

Write $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{\ell}$, where C_{1}, \ldots, C_{ℓ} are OR clauses. We want to simulate each clause C_{i} in F^{\prime}. How we do this depends on its width.

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let F be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, then apply our 3-SAT oracle to F^{\prime}.

Write $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{\ell}$, where C_{1}, \ldots, C_{ℓ} are OR clauses. We want to simulate each clause C_{i} in F^{\prime}. How we do this depends on its width.
C_{i} has width 2: Say $C_{i}=x \vee y$. Then we would like to replace C_{i} with $x \vee y \vee$ False in F^{\prime}, since this is True if and only if $x \vee y=$ True.

But False is not a literal... Can we add a new variable which is always False in any satisfying assignment?

The width of an OR clause is the number of literals it contains. A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let F be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, then apply our 3-SAT oracle to F^{\prime}.

Write $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{\ell}$, where C_{1}, \ldots, C_{ℓ} are OR clauses. We want to simulate each clause C_{i} in F^{\prime}. How we do this depends on its width.
C_{i} has width 2: Say $C_{i}=x \vee y$. Then we would like to replace C_{i} with $x \vee y \vee$ False in F^{\prime}, since this is True if and only if $x \vee y=$ True.

But False is not a literal... Can we add a new variable which is always False in any satisfying assignment? Yes! If we add this CNF to F :
$F_{z}=\left(\neg z_{1} \vee z_{2} \vee z_{3}\right) \wedge\left(\neg z_{1} \vee z_{2} \vee \neg z_{3}\right) \wedge\left(\neg z_{1} \vee \neg z_{2} \vee z_{3}\right) \wedge\left(\neg z_{1} \vee \neg z_{2} \vee \neg z_{3}\right)$
then z_{1} is forced to be False: No matter what value z_{2} and z_{3} take, their literals must both be False in one of the above OR clauses.

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width 2 clauses:

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width 2 clauses:
If C_{i} has width 1: Say $C_{i}=\neg x$. Then we would like to replace C_{i} with $\neg x \vee$ False \vee False... which we already know how to do!

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width 2 clauses:
If $C_{\boldsymbol{i}}$ has width 1: Say $C_{i}=\neg x$. Then we would like to replace C_{i} with $\neg x \vee$ False \vee False... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z_{1} (since OR clauses can't contain two copies of the same literal).

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width 2 clauses:
If $C_{\boldsymbol{i}}$ has width 1: Say $C_{i}=\neg x$. Then we would like to replace C_{i} with $\neg x \vee$ False \vee False... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z_{1} (since OR clauses can't contain two copies of the same literal).

If C_{i} has width 3: We can just leave it as it is.

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width 1 clauses: \checkmark Width 2 clauses: \checkmark Width 3 clauses:
If C_{i} has width $\boldsymbol{k} \geq$ 4: Say $C_{i}=\ell_{1} \vee \cdots \vee \ell_{k}$. We would like to replace
$C_{i} \rightarrow\left(e_{1}=\ell_{1} \vee \ell_{2}\right) \wedge\left(e_{2}=e_{1} \vee \ell_{3}\right) \wedge \cdots \wedge\left(e_{k-2}=e_{k-3} \vee \ell_{k-1}\right) \wedge\left(e_{k-2} \vee \ell_{k}\right)$,
as given the values of $\ell_{1}, \ldots, \ell_{k}$, this is satisfiable if and only if $\ell_{1} \vee \cdots \vee \ell_{k}=$ True.

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width 1 clauses: \checkmark Width 2 clauses: \checkmark Width 3 clauses:
If C_{i} has width $\boldsymbol{k} \geq \mathbf{4}$: Say $C_{i}=\ell_{1} \vee \cdots \vee \ell_{k}$. We would like to replace
$C_{i} \rightarrow\left(e_{1}=\ell_{1} \vee \ell_{2}\right) \wedge\left(e_{2}=e_{1} \vee \ell_{3}\right) \wedge \cdots \wedge\left(e_{k-2}=e_{k-3} \vee \ell_{k-1}\right) \wedge\left(e_{k-2} \vee \ell_{k}\right)$,
as given the values of $\ell_{1}, \ldots, \ell_{k}$, this is satisfiable if and only if $\ell_{1} \vee \cdots \vee \ell_{k}=$ True. How do we implement the e_{i} 's?

The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.
3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT $\leq_{c} 3$-SAT.
Let $F=C_{1} \wedge \cdots \wedge C_{\ell}$ be the input CNF formula to SAT. We will rewrite F as an equivalent width-3 formula F^{\prime}, simulating each C_{i} with an equivalent width-3 CNF, then apply our 3-SAT oracle to F^{\prime}.

Width $\mathbf{1}$ clauses: \checkmark Width $\mathbf{2}$ clauses: \checkmark Width $\mathbf{3}$ clauses:
If C_{i} has width $\boldsymbol{k} \geq$ 4: Say $C_{i}=\ell_{1} \vee \cdots \vee \ell_{k}$. We would like to replace
$C_{i} \rightarrow\left(e_{1}=\ell_{1} \vee \ell_{2}\right) \wedge\left(e_{2}=e_{1} \vee \ell_{3}\right) \wedge \cdots \wedge\left(e_{k-2}=e_{k-3} \vee \ell_{k-1}\right) \wedge\left(e_{k-2} \vee \ell_{k}\right)$,
as given the values of $\ell_{1}, \ldots, \ell_{k}$, this is satisfiable if and only if $\ell_{1} \vee \cdots \vee \ell_{k}=$ True. How do we implement the e_{i} 's? We have

$$
(a=b \vee c) \text { if and only if }(a \vee \neg b) \wedge(a \vee \neg c) \wedge(\neg a \vee b \vee c) ;
$$

the first two clauses on the right enforce $a=\mathrm{False} \Rightarrow b \vee c=\mathrm{False}$, and the last enforces $b \vee c=\mathrm{False} \Rightarrow a=\mathrm{False}$.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
F^{\prime}=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
F^{\prime}=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

First we note what we'd like the clauses to become.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & (u \vee \text { False } \vee \text { False }) \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \\
& \wedge(y \vee z) \wedge(\neg v \vee w \vee z) .
\end{aligned}
$$

First we note what we'd like the clauses to become.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& (u \vee \text { False } \vee \text { False }) \wedge(\neg \boldsymbol{u} \vee \neg v \vee \text { False }) \\
& \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
\end{aligned}
$$

First we note what we'd like the clauses to become.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & (u \vee \text { False } \vee \text { False }) \wedge(\neg u \vee \neg v \vee \text { False }) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z) \wedge(\neg v \vee w \vee z) .
\end{aligned}
$$

First we note what we'd like the clauses to become.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & (u \vee \text { False } \vee \text { False }) \wedge(\neg u \vee \neg v \vee \text { False }) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg v \vee w \vee z)
\end{aligned}
$$

First we note what we'd like the clauses to become.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & (u \vee \text { False } \vee \text { False }) \wedge(\neg u \vee \neg v \vee \text { False }) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg v \vee w \vee z)
\end{aligned}
$$

First we note what we'd like the clauses to become.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& u \vee \text { False } \vee \text { False }) \wedge(\neg u \vee \neg v \vee \text { False }) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg v \vee w \vee z) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& (u \vee \text { False } \vee \text { False }) \wedge(\neg u \vee \neg v \vee \text { False }) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg \boldsymbol{f}_{1} \vee \boldsymbol{a}_{1} \vee \boldsymbol{a}_{2}\right) \wedge\left(\neg \boldsymbol{f}_{1} \vee \boldsymbol{a}_{\mathbf{1}} \vee \neg \boldsymbol{a}_{\mathbf{2}}\right) \wedge\left(\neg \boldsymbol{f}_{1} \vee \neg \boldsymbol{a}_{1} \vee \boldsymbol{a}_{\mathbf{2}}\right) \\
& \wedge\left(\neg \boldsymbol{f}_{\mathbf{1}} \vee \neg \boldsymbol{a}_{1} \vee \neg \boldsymbol{a}_{\mathbf{2}}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & \left(u \vee f_{1} \vee \text { False }\right) \wedge(\neg u \vee \neg v \vee \text { False }) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg \vee \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & \left(u \vee f_{1} \vee \text { False }\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee \text { False }\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg \vee \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & \left(u \vee f_{1} \vee \text { False }\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge(y \vee z \vee \text { False }) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & \left(u \vee f_{1} \vee \text { False }\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & \left(u \vee f_{1} \vee \text { False }\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$ and the second instance with f_{2}.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}= & \left(u \vee f_{1} \vee \text { False }\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee \boldsymbol{a}_{1} \vee \boldsymbol{a}_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg \boldsymbol{a}_{1} \vee \boldsymbol{a}_{2}\right) \wedge\left(\neg f_{2} \vee \neg \boldsymbol{a}_{1} \vee \neg \boldsymbol{a}_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$ and the second instance with f_{2}.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left.u \vee f_{1} \vee \boldsymbol{f}_{2}\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg \vee \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

We simulate the first instance of False with $f_{1} \ldots$ and the second instance with f_{2}.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left(u f_{1} \vee f_{2}\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \wedge\left(e_{2}=e_{1} \vee x\right) \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg \vee \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

Finally, we simulate the equality clauses.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left.u \vee f_{1} \vee f_{2}\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1}=v \vee \neg w\right) \\
& \wedge\left(e_{2}=e_{1} \vee x\right) \\
& \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

Finally, we simulate the equality clauses.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left.\boldsymbol{u} \vee f_{1} \vee f_{2}\right) \wedge\left(\neg u \vee \neg \boldsymbol{v} \vee f_{1}\right) \\
& \wedge\left(\boldsymbol{e}_{\mathbf{1}} \vee \neg \boldsymbol{v} \vee \boldsymbol{f}_{\mathbf{1}}\right) \wedge\left(\boldsymbol{e}_{\mathbf{1}} \vee \boldsymbol{w} \vee \boldsymbol{f}_{\mathbf{1}}\right) \wedge\left(\neg \boldsymbol{e}_{\mathbf{1}} \vee \boldsymbol{v} \vee \neg \boldsymbol{w}\right) \\
& \wedge\left(e_{2}=e_{1} \vee x\right) \\
& \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg \boldsymbol{v} \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

Finally, we simulate the equality clauses.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left.u \vee f_{1} \vee f_{2}\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1} \vee \neg v \vee f_{1}\right) \wedge\left(e_{1} \vee w \vee f_{1}\right) \wedge\left(\neg e_{1} \vee v \vee \neg w\right) \\
& \wedge\left(\boldsymbol{e}_{2} \vee \neg \boldsymbol{e}_{1} \vee \boldsymbol{f}_{1}\right) \wedge\left(\boldsymbol{e}_{2} \vee \neg \boldsymbol{x} \vee \boldsymbol{f}_{\mathbf{1}}\right) \wedge\left(\neg \boldsymbol{e}_{\mathbf{2}} \vee \boldsymbol{e}_{\mathbf{1}} \vee \boldsymbol{x}\right) \\
& \wedge\left(e_{3}=e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

Finally, we simulate the equality clauses.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left.u \vee f_{1} \vee f_{2}\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1} \vee \neg v \vee f_{1}\right) \wedge\left(e_{1} \vee w \vee f_{1}\right) \wedge\left(\neg e_{1} \vee v \vee \neg w\right) \\
& \wedge\left(e_{2} \vee \neg e_{1} \vee f_{1}\right) \wedge\left(e_{2} \vee \neg x \vee f_{1}\right) \wedge\left(\neg e_{2} \vee e_{1} \vee x\right) \\
& \wedge\left(e_{3} \vee \neg \boldsymbol{e}_{2} \vee \boldsymbol{f}_{1}\right) \wedge\left(e_{3} \vee \boldsymbol{y} \vee \boldsymbol{f}_{1}\right) \vee\left(\neg \boldsymbol{e}_{3} \vee \boldsymbol{e}_{2} \vee \neg \boldsymbol{y}\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg v \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

Finally, we simulate the equality clauses.

Example of SAT $\leq_{c} 3$-SAT reduction

Suppose our original SAT instance is:

$$
F=u \wedge(\neg u \vee \neg v) \wedge(v \vee \neg w \vee x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge(\neg v \vee w \vee z)
$$

We transform this into a 3-SAT instance as follows:

$$
\begin{aligned}
F^{\prime}=(& \left.u \vee f_{1} \vee f_{2}\right) \wedge\left(\neg u \vee \neg v \vee f_{1}\right) \\
& \wedge\left(e_{1} \vee \neg v \vee f_{1}\right) \wedge\left(e_{1} \vee w \vee f_{1}\right) \wedge\left(\neg e_{1} \vee v \vee \neg w\right) \\
& \wedge\left(e_{2} \vee \neg e_{1} \vee f_{1}\right) \wedge\left(e_{2} \vee \neg x \vee f_{1}\right) \wedge\left(\neg e_{2} \vee e_{1} \vee x\right) \\
& \wedge\left(e_{3} \vee \neg e_{2} \vee f_{1}\right) \wedge\left(e_{3} \vee y \vee f_{1}\right) \vee\left(\neg e_{3} \vee e_{2} \vee \neg y\right) \\
& \wedge\left(e_{3} \vee \neg z \vee f_{1}\right) \wedge\left(y \vee z \vee f_{1}\right) \wedge(\neg \vee \vee w \vee z) \\
& \wedge\left(\neg f_{1} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{1} \vee a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{1} \vee \neg a_{1} \vee a_{2}\right) \\
& \wedge\left(\neg f_{1} \vee \neg a_{1} \vee \neg a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg f_{2} \vee \neg a_{1} \vee a_{2}\right) \wedge\left(\neg f_{2} \vee \neg a_{1} \vee \neg a_{2}\right) .
\end{aligned}
$$

Phew! We could have done this directly, without the gadgets as intermediate steps, but they made it much easier to think about...

