
NP-completeness of 3-SAT
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas NP-completeness of 3-SAT 1 / 6



An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of literals. A CNF
formula is an AND of OR clauses. The SAT problem asks: “Is the input CNF formula
satisfiable?”

We first give a special case of SAT which is still NP-complete. This will
make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF
formula has width k if all its OR clauses have width k. For example,

(x ∨ ¬y ∨ z) ∧ (a ∨ x ∨ z) has width 3.

3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: 3-SAT is NP-complete.

Certainly 3-SAT ∈ NP, but our proof that SAT is NP-hard breaks for
3-SAT. So to prove NP-hardness, we will reduce SAT to 3-SAT; the result
then follows since SAT is NP-hard.

John Lapinskas NP-completeness of 3-SAT 2 / 6



An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of literals. A CNF
formula is an AND of OR clauses. The SAT problem asks: “Is the input CNF formula
satisfiable?”

We first give a special case of SAT which is still NP-complete. This will
make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF
formula has width k if all its OR clauses have width k. For example,

(x ∨ ¬y ∨ z) ∧ (a ∨ x ∨ z) has width 3.

3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: 3-SAT is NP-complete.

Certainly 3-SAT ∈ NP, but our proof that SAT is NP-hard breaks for
3-SAT. So to prove NP-hardness, we will reduce SAT to 3-SAT; the result
then follows since SAT is NP-hard.

John Lapinskas NP-completeness of 3-SAT 2 / 6



An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of literals. A CNF
formula is an AND of OR clauses. The SAT problem asks: “Is the input CNF formula
satisfiable?”

We first give a special case of SAT which is still NP-complete. This will
make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF
formula has width k if all its OR clauses have width k. For example,

(x ∨ ¬y ∨ z) ∧ (a ∨ x ∨ z) has width 3.

3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: 3-SAT is NP-complete.

Certainly 3-SAT ∈ NP, but our proof that SAT is NP-hard breaks for
3-SAT. So to prove NP-hardness, we will reduce SAT to 3-SAT; the result
then follows since SAT is NP-hard.

John Lapinskas NP-completeness of 3-SAT 2 / 6



An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of literals. A CNF
formula is an AND of OR clauses. The SAT problem asks: “Is the input CNF formula
satisfiable?”

We first give a special case of SAT which is still NP-complete. This will
make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF
formula has width k if all its OR clauses have width k. For example,

(x ∨ ¬y ∨ z) ∧ (a ∨ x ∨ z) has width 3.

3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: 3-SAT is NP-complete.

Certainly 3-SAT ∈ NP, but our proof that SAT is NP-hard breaks for
3-SAT. So to prove NP-hardness, we will reduce SAT to 3-SAT; the result
then follows since SAT is NP-hard.

John Lapinskas NP-completeness of 3-SAT 2 / 6



An easier problem to reduce from: 3-SAT

A literal is either a variable x or its negation ¬x . An OR clause is an OR of literals. A CNF
formula is an AND of OR clauses. The SAT problem asks: “Is the input CNF formula
satisfiable?”

We first give a special case of SAT which is still NP-complete. This will
make it much easier to prove other problems are NP-hard!

The width of an OR clause is the number of literals it contains. A CNF
formula has width k if all its OR clauses have width k. For example,

(x ∨ ¬y ∨ z) ∧ (a ∨ x ∨ z) has width 3.

3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: 3-SAT is NP-complete.

Certainly 3-SAT ∈ NP, but our proof that SAT is NP-hard breaks for
3-SAT. So to prove NP-hardness, we will reduce SAT to 3-SAT; the result
then follows since SAT is NP-hard.

John Lapinskas NP-completeness of 3-SAT 2 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F be the input CNF formula to SAT. We will rewrite F as an
equivalent width-3 formula F ′, then apply our 3-SAT oracle to F ′.

Write F = C1 ∧ C2 ∧ · · · ∧ Cℓ, where C1, . . . ,Cℓ are OR clauses. We want
to simulate each clause Ci in F ′. How we do this depends on its width.

Ci has width 2: Say Ci = x ∨ y . Then we would like to replace Ci with
x ∨ y ∨ False in F ′, since this is True if and only if x ∨ y = True.

But False is not a literal... Can we add a new variable which is always
False in any satisfying assignment? Yes! If we add this CNF to F :

Fz = (¬z1∨z2∨z3)∧ (¬z1∨z2∨¬z3)∧ (¬z1∨¬z2∨z3)∧ (¬z1∨¬z2∨¬z3)

then z1 is forced to be False: No matter what value z2 and z3 take, their
literals must both be False in one of the above OR clauses. ✓

John Lapinskas NP-completeness of 3-SAT 3 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F be the input CNF formula to SAT. We will rewrite F as an
equivalent width-3 formula F ′, then apply our 3-SAT oracle to F ′.

Write F = C1 ∧ C2 ∧ · · · ∧ Cℓ, where C1, . . . ,Cℓ are OR clauses. We want
to simulate each clause Ci in F ′. How we do this depends on its width.

Ci has width 2: Say Ci = x ∨ y . Then we would like to replace Ci with
x ∨ y ∨ False in F ′, since this is True if and only if x ∨ y = True.

But False is not a literal... Can we add a new variable which is always
False in any satisfying assignment? Yes! If we add this CNF to F :

Fz = (¬z1∨z2∨z3)∧ (¬z1∨z2∨¬z3)∧ (¬z1∨¬z2∨z3)∧ (¬z1∨¬z2∨¬z3)

then z1 is forced to be False: No matter what value z2 and z3 take, their
literals must both be False in one of the above OR clauses. ✓

John Lapinskas NP-completeness of 3-SAT 3 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F be the input CNF formula to SAT. We will rewrite F as an
equivalent width-3 formula F ′, then apply our 3-SAT oracle to F ′.

Write F = C1 ∧ C2 ∧ · · · ∧ Cℓ, where C1, . . . ,Cℓ are OR clauses. We want
to simulate each clause Ci in F ′. How we do this depends on its width.

Ci has width 2: Say Ci = x ∨ y . Then we would like to replace Ci with
x ∨ y ∨ False in F ′, since this is True if and only if x ∨ y = True.

But False is not a literal... Can we add a new variable which is always
False in any satisfying assignment? Yes! If we add this CNF to F :

Fz = (¬z1∨z2∨z3)∧ (¬z1∨z2∨¬z3)∧ (¬z1∨¬z2∨z3)∧ (¬z1∨¬z2∨¬z3)

then z1 is forced to be False: No matter what value z2 and z3 take, their
literals must both be False in one of the above OR clauses. ✓

John Lapinskas NP-completeness of 3-SAT 3 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F be the input CNF formula to SAT. We will rewrite F as an
equivalent width-3 formula F ′, then apply our 3-SAT oracle to F ′.

Write F = C1 ∧ C2 ∧ · · · ∧ Cℓ, where C1, . . . ,Cℓ are OR clauses. We want
to simulate each clause Ci in F ′. How we do this depends on its width.

Ci has width 2: Say Ci = x ∨ y . Then we would like to replace Ci with
x ∨ y ∨ False in F ′, since this is True if and only if x ∨ y = True.

But False is not a literal... Can we add a new variable which is always
False in any satisfying assignment?

Yes! If we add this CNF to F :

Fz = (¬z1∨z2∨z3)∧ (¬z1∨z2∨¬z3)∧ (¬z1∨¬z2∨z3)∧ (¬z1∨¬z2∨¬z3)

then z1 is forced to be False: No matter what value z2 and z3 take, their
literals must both be False in one of the above OR clauses. ✓

John Lapinskas NP-completeness of 3-SAT 3 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F be the input CNF formula to SAT. We will rewrite F as an
equivalent width-3 formula F ′, then apply our 3-SAT oracle to F ′.

Write F = C1 ∧ C2 ∧ · · · ∧ Cℓ, where C1, . . . ,Cℓ are OR clauses. We want
to simulate each clause Ci in F ′. How we do this depends on its width.

Ci has width 2: Say Ci = x ∨ y . Then we would like to replace Ci with
x ∨ y ∨ False in F ′, since this is True if and only if x ∨ y = True.

But False is not a literal... Can we add a new variable which is always
False in any satisfying assignment? Yes! If we add this CNF to F :

Fz = (¬z1∨z2∨z3)∧ (¬z1∨z2∨¬z3)∧ (¬z1∨¬z2∨z3)∧ (¬z1∨¬z2∨¬z3)

then z1 is forced to be False: No matter what value z2 and z3 take, their
literals must both be False in one of the above OR clauses. ✓

John Lapinskas NP-completeness of 3-SAT 3 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 2 clauses: ✓

If Ci has width 1: Say Ci = ¬x . Then we would like to replace Ci with
¬x ∨ False ∨ False... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z1
(since OR clauses can’t contain two copies of the same literal). ✓

If Ci has width 3: We can just leave it as it is. ✓

John Lapinskas NP-completeness of 3-SAT 4 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 2 clauses: ✓

If Ci has width 1: Say Ci = ¬x . Then we would like to replace Ci with
¬x ∨ False ∨ False... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z1
(since OR clauses can’t contain two copies of the same literal). ✓

If Ci has width 3: We can just leave it as it is. ✓

John Lapinskas NP-completeness of 3-SAT 4 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 2 clauses: ✓

If Ci has width 1: Say Ci = ¬x . Then we would like to replace Ci with
¬x ∨ False ∨ False... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z1
(since OR clauses can’t contain two copies of the same literal). ✓

If Ci has width 3: We can just leave it as it is. ✓

John Lapinskas NP-completeness of 3-SAT 4 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 2 clauses: ✓

If Ci has width 1: Say Ci = ¬x . Then we would like to replace Ci with
¬x ∨ False ∨ False... which we already know how to do!

We just need to introduce an extra copy of our always-False variable z1
(since OR clauses can’t contain two copies of the same literal). ✓

If Ci has width 3: We can just leave it as it is. ✓

John Lapinskas NP-completeness of 3-SAT 4 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 1 clauses: ✓ Width 2 clauses: ✓ Width 3 clauses: ✓

If Ci has width k ≥ 4: Say Ci = ℓ1 ∨ · · · ∨ ℓk . We would like to replace

Ci → (e1 = ℓ1∨ℓ2)∧(e2 = e1∨ℓ3)∧· · ·∧(ek−2 = ek−3∨ℓk−1)∧(ek−2∨ℓk),

as given the values of ℓ1, . . . , ℓk , this is satisfiable if and only if
ℓ1 ∨ · · · ∨ ℓk = True.

How do we implement the ei ’s? We have

(a = b ∨ c) if and only if (a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬a ∨ b ∨ c);

the first two clauses on the right enforce a = False ⇒ b ∨ c = False,
and the last enforces b ∨ c = False ⇒ a = False.

John Lapinskas NP-completeness of 3-SAT 5 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 1 clauses: ✓ Width 2 clauses: ✓ Width 3 clauses: ✓

If Ci has width k ≥ 4: Say Ci = ℓ1 ∨ · · · ∨ ℓk . We would like to replace

Ci → (e1 = ℓ1∨ℓ2)∧(e2 = e1∨ℓ3)∧· · ·∧(ek−2 = ek−3∨ℓk−1)∧(ek−2∨ℓk),

as given the values of ℓ1, . . . , ℓk , this is satisfiable if and only if
ℓ1 ∨ · · · ∨ ℓk = True. How do we implement the ei ’s?

We have

(a = b ∨ c) if and only if (a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬a ∨ b ∨ c);

the first two clauses on the right enforce a = False ⇒ b ∨ c = False,
and the last enforces b ∨ c = False ⇒ a = False.

John Lapinskas NP-completeness of 3-SAT 5 / 6



The width of an OR clause is the number of literals it contains.
A CNF formula has width k if all its OR clauses have width k.

3-SAT asks: is the input width-3 CNF formula satisfiable?
Theorem: 3-SAT is NP-complete. Goal: Prove SAT ≤c 3-SAT.

Let F = C1 ∧ · · · ∧ Cℓ be the input CNF formula to SAT. We will rewrite F as an equivalent
width-3 formula F ′, simulating each Ci with an equivalent width-3 CNF, then apply our 3-SAT
oracle to F ′.

Width 1 clauses: ✓ Width 2 clauses: ✓ Width 3 clauses: ✓

If Ci has width k ≥ 4: Say Ci = ℓ1 ∨ · · · ∨ ℓk . We would like to replace

Ci → (e1 = ℓ1∨ℓ2)∧(e2 = e1∨ℓ3)∧· · ·∧(ek−2 = ek−3∨ℓk−1)∧(ek−2∨ℓk),

as given the values of ℓ1, . . . , ℓk , this is satisfiable if and only if
ℓ1 ∨ · · · ∨ ℓk = True. How do we implement the ei ’s? We have

(a = b ∨ c) if and only if (a ∨ ¬b) ∧ (a ∨ ¬c) ∧ (¬a ∨ b ∨ c);

the first two clauses on the right enforce a = False ⇒ b ∨ c = False,
and the last enforces b ∨ c = False ⇒ a = False.

John Lapinskas NP-completeness of 3-SAT 5 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

First we note what we’d like the clauses to become.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z)
∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

First we note what we’d like the clauses to become.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

First we note what we’d like the clauses to become.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

First we note what we’d like the clauses to become.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z).

First we note what we’d like the clauses to become.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z).

First we note what we’d like the clauses to become.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z).

We simulate the first instance of False with f1...

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ False ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1...

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ False) ∧ (¬u ∨ ¬v ∨ False)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1...

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ False) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ False) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1...

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ False) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ False) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1...

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ False) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1...

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ False) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1... and the second instance
with f2.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ False) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1... and the second instance
with f2.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

We simulate the first instance of False with f1... and the second instance
with f2.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w) ∧ (e2 = e1 ∨ x) ∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

Finally, we simulate the equality clauses.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 = v ∨ ¬w)

∧ (e2 = e1 ∨ x)

∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

Finally, we simulate the equality clauses.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 ∨ ¬v ∨ f1) ∧ (e1 ∨ w ∨ f1) ∧ (¬e1 ∨ v ∨ ¬w)

∧ (e2 = e1 ∨ x)

∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

Finally, we simulate the equality clauses.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 ∨ ¬v ∨ f1) ∧ (e1 ∨ w ∨ f1) ∧ (¬e1 ∨ v ∨ ¬w)

∧ (e2 ∨ ¬e1 ∨ f1) ∧ (e2 ∨ ¬x ∨ f1) ∧ (¬e2 ∨ e1 ∨ x)

∧ (e3 = e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

Finally, we simulate the equality clauses.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 ∨ ¬v ∨ f1) ∧ (e1 ∨ w ∨ f1) ∧ (¬e1 ∨ v ∨ ¬w)

∧ (e2 ∨ ¬e1 ∨ f1) ∧ (e2 ∨ ¬x ∨ f1) ∧ (¬e2 ∨ e1 ∨ x)

∧ (e3 ∨ ¬e2 ∨ f1) ∧ (e3 ∨ y ∨ f1) ∨ (¬e3 ∨ e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

Finally, we simulate the equality clauses.

John Lapinskas NP-completeness of 3-SAT 6 / 6



Example of SAT ≤c 3-SAT reduction

Suppose our original SAT instance is:

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z).

We transform this into a 3-SAT instance as follows:

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1)

∧ (e1 ∨ ¬v ∨ f1) ∧ (e1 ∨ w ∨ f1) ∧ (¬e1 ∨ v ∨ ¬w)

∧ (e2 ∨ ¬e1 ∨ f1) ∧ (e2 ∨ ¬x ∨ f1) ∧ (¬e2 ∨ e1 ∨ x)

∧ (e3 ∨ ¬e2 ∨ f1) ∧ (e3 ∨ y ∨ f1) ∨ (¬e3 ∨ e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z)

∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2)
∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

Phew! We could have done this directly, without the gadgets as intermediate
steps, but they made it much easier to think about...

John Lapinskas NP-completeness of 3-SAT 6 / 6


