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Examples of NP-hardness

We can prove a problem is NP-hard by reducing from 3-SAT... but we can
also do it by reducing from any other NP-complete problem.

There are so many to choose from it’s hard to get the scale across, so in
the vein of Project Steve I’m only going to list examples from video games:

Lemmings;

Pac-Man;

Minesweeper;

Tetris;

Candy Crush;

Angry Birds;

Classic Mario games;

Spelunky;

Donkey Kong Country 1–3

Every Legend of Zelda game;

Every Metroid game;

Every Fire Emblem game;

Mainline Pokémon games;

Mario Kart;

Desktop Tower Defense;

Harvest Moon;

Inventory packing in ARPGs;

Damage boosting in speedruns.
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Independent sets

In a graph G = (V ,E ), an independent set is a subset of V which
contains no edges. For example:

These sets are independent...

But this set isn’t.

Independent sets are important in graphs which model conflicts.

For example, suppose we are trying to assign frequencies to radio
transmitters while avoiding interference. If we join two transmitters by an
edge when they are close enough to interfere with each other, then we can
safely assign the same frequency to all transmitters in an independent set.
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In a graph G = (V ,E), an independent set is a subset of V which contains no edges.

Independent sets are important in graphs which model conflicts.

For example, suppose we are trying to assign frequencies to radio transmitters while avoiding
interference. If we join two transmitters by an edge when they are close enough to interfere with
each other, then we can assign the same frequency to all transmitters in an independent set.

We would often like to be able to find a maximum independent set, i.e.
one which is as big as possible.

The decision version of this problem, IS, asks: Given a graph G = (V ,E ),
and an integer k , does G contain an independent set of size at least k?

Theorem: IS is NP-complete.

We can verify a set is independent in polynomial time, so IS ∈ NP.

We will show NP-hardness by reducing from 3-SAT, i.e. proving
3-SAT ≤c IS. Since we already proved SAT ≤c 3-SAT, the result follows.
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In a graph G = (V ,E), an independent set is a subset of V containing no edges. IS asks: Does
G contain an independent set of size at least k?

A CNF formula has width 3 if all its OR clauses contain 3 literals.
3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: IS is NP-complete. Goal: Prove 3-SAT ≤c IS.

Let F be an instance of 3-SAT. We’ll follow our usual approach: build a
graph G whose size-(≥k) independent sets correspond to satisfying
assignments of F , then apply our IS oracle to G .

To simulate the variables of F , we want a gadget that can be in one of
two states which will represent True and False...

x
x

False True

Idea: Use an edge!

An independent set can’t contain both vertices, and (if we do everything
else right) a maximum independent set must contain one of the two
vertices.
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In a graph G = (V ,E), an independent set is a subset of V containing no edges. IS asks: Does
G contain an independent set of size at least k?

A CNF formula has width 3 if all its OR clauses contain 3 literals.
3-SAT asks: is the input width-3 CNF formula satisfiable?

Theorem: IS is NP-complete. Goal: Prove 3-SAT ≤c IS.

Let F be an instance of 3-SAT. We’ll build a graph G whose size-(≥k) independent sets
correspond to satisfying assignments of F .

Our variable gadget is:

x
x

False True

We use the same idea to model the clauses of F . We have three literals in
the clause, and we want to force one of them to be true, so...

x ∨ ¬y ∨ z
x True

¬y True

z True

We will set things up so that:
Maximum independent set =⇒ exactly one vertex is included.
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Joining the gadgets together

So if F = (x ∨ ¬y ∨ z) ∧ (w ∨ ¬x ∨ ¬z), say, how do we build G?

w False w True x False x True y False y True z False z True

x True

¬y True

z True w True

¬x True

¬z True
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w False w True x False x True y False y True z False z True

x True

¬y True

z True w True

¬x True

¬z True

And now we need to enforce that “x True” is only in the independent set
if x is actually true. Which we can do by joining it to the corresponding “x
False” vertex in the variable gadget.
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Now a satisfying assignment in F , say w = True, x = True, y = False,
z = False, corresponds to a size-6 independent set in G .
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w False w True x False x True y False y True z False z True

x True

¬y True

z True w True

¬x True

¬z True

So any size-(≥6) independent set must have size exactly 6, and contain
one vertex from each variable gadget and one from each clause gadget.
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Joining the gadgets together

So if F = (x ∨ ¬y ∨ z) ∧ (w ∨ ¬x ∨ ¬z), say, how do we build G?

w False w True x False x True y False y True z False z True

x True

¬y True

z True w True

¬x True

¬z True

Hence any size-(≥6) independent set corresponds to an assignment, in this
case w = x = y = False, z = True. It must be satisfying because there
are no edges between variable vertices and clause vertices.
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Joining the gadgets together

So if F = (x ∨ ¬y ∨ z) ∧ (w ∨ ¬x ∨ ¬z), say, how do we build G?

w False w True x False x True y False y True z False z True

x True

¬y True

z True w True

¬x True

¬z True

The same construction (and the same correctness proof) works for any
instance of 3-SAT.
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Recall from Video 8-2...

A vertex cover in a graph G = (V ,E ) is a set X ⊆ V such that every
edge in E has at least one vertex in X .

A valid vertex cover. Not a valid vertex cover.

We would like to find the smallest possible vertex cover of G .
We claimed this problem was hard to solve exactly (our algorithm was
approximate), but we never proved it...

The decision version of this problem (VC) asks: Given a graph G , and an
integer k , does G contain a vertex cover of size at most k?
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A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.

(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

We can verify a set is a vertex cover in polynomial time, so VC ∈ NP.
We’ll prove NP-hardness by proving IS ≤c VC.

This time though, we’ll do it non-constructively, without gadgets.

Lemma: X is an independent set if and only if V \ X is a vertex cover.
(Because an edge intersects V \ X if and only if it’s not a subset of X .)

So G contains an independent set of size at least k if and only if G
contains a vertex cover of size at most |V | − k .

Our reduction just passes the instance (G , |V | − k) to our VC-oracle.

John Lapinskas IS and VC 9 / 10



A vertex cover in a graph G = (V ,E) is a set X ⊆ V such that every edge in E has at least
one vertex in X .

VC asks: Does G contain a vertex cover of size at most k?

Theorem: VC is NP-complete.

In video 8-2, we expressed finding maximum vertex covers in terms of
integer linear programming for our approximation algorithm:

1

2

3

4 5

6

7

8 ∑
vxv → min subject to

xu + xv ≥ 1 for all {u, v} ∈ E ;

xv ≤ 1 for all v ∈ V ;

xv ≥ 0 for all v ∈ V ;

xv ∈ N for all v ∈ V .

Corollary: Integer linear programming is NP-hard!

Notice we reduced SAT ≤c 3-SAT ≤c IS ≤c VC ≤c ILP — by proving one
problem is NP-hard, we make all our future hardness proofs easier...
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