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Lies, damned lies and sketch proofs

Cook-Levin Theorem: Any problem in NP is Cook-reducible to SAT.

Let X be any problem in NP, and let x⃗ be an instance of X .

Then we will construct a CNF formula Fx⃗ , of size polynomial in |x⃗ |, which
is satisfiable if and only if x⃗ is a Yes instance. Our Cook reduction then
just applies the SAT oracle to Fx⃗ and outputs the result.

By definition of NP, there is a polynomial-time algorithm Verify such
that x⃗ is a Yes instance if and only if Verify(x⃗ , w⃗) = Yes for some w⃗ . So
we would like to express the statement “Verify(x⃗ , w⃗) = Yes” as a CNF
formula in w⃗ .

Problem: We know nothing about how Verify works. So to do this, we
need to be able to express “A computer running program P on input I for
t steps outputs Yes” as a CNF formula of polynomial size...!
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Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 1 1 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.
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Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 0 0 · · ·· · ·
Machine in state 3, head
reads 0 −→ Write 1, move
left, enter state 7.
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Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 0 1 · · ·· · ·
Machine in state 7, head
reads 0 −→ Write 1, move
left, enter state 1.
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Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 1 1 · · ·· · ·
Machine in state 1, head
reads 0 −→ Write 0, move
right, enter state 10.
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Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 1 1 · · ·· · ·
Machine in state 10, head
reads 1 −→ Halt.
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Expressing computation with logic

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into
cells containing binary values, plus a tape head. At each time step, based on the current cell
and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and
then the Turing machine changes state or halts.

The Church-Turing Thesis says: Any computable function is computable
using a Turing machine.

The Strong Church-Turing Thesis says: Any function computable in
polynomial time is computable in polynomial time using a Turing
machine. (Ignoring quantum computers, anyway...)

So we can take our program in the form of a Turing machine, which is
much easier to simulate!
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Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Idea: Model the entire computation from start to finish, step by step.

We will have variables:

Cp,τ to model the cell contents. We want Cp,τ = 1 if and only if cell
p contains a 1 at time τ .

Ss,τ to model which state the machine is in. We want Ss,τ = 1 if and
only if the machine is in state s at time τ .

Pp,τ to model the position of the tape head. We want Pp,τ = 1 if and
only if the tape head is at cell p at time τ .

Problem: The tape is infinite, so we need infinitely many variables!
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Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Idea: Model the entire computation from start to finish, step by step.

We will have variables:

Cp,τ to model the cell contents. We want Cp,τ = 1 if and only if cell
p contains a 1 at time τ .

Ss,τ to model which state the machine is in. We want Ss,τ = 1 if and
only if the machine is in state s at time τ .

Pp,τ to model the position of the tape head. We want Pp,τ = 1 if and
only if the tape head is at cell p at time τ .

Solution: In time t the tape head can only move t spaces, so the state of
the Turing machine is determined entirely by cells −t,−t + 1, . . . , t.
So actually we only need O(t2) variables.
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Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Our variables: We want: Cp,τ = contents of cell p at time τ ;
Ss,τ = 1 iff machine is in state s at time τ ;
Pp,τ = 1 iff head is at cell p at time τ .

Write Mτ for the collection of variables corresponding to the machine’s
state at time τ , i.e. {C−t,τ , . . . ,Ct,τ , S1,τ , . . . ,Sq,τ , P−t,τ , . . . ,Pt,τ}.

We would like to write:

f (M, I⃗ , t) = [M0 ↔ Tape reads I⃗ , state is 1, head at cell 0]

∧ [M1 is derived correctly from M0]

∧ [M2 is derived correctly from M1]

...

∧ [Mt is derived correctly from Mt−1]

∧ [Mt ↔ Machine has halted with output Yes]

If we can express these as CNF statements of length polynomial in t,
we’re done since an AND of CNFs is in CNF.

This is painful but ultimately doable!
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We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Our variables: We want: Cp,τ = contents of cell p at time τ ;
Ss,τ = 1 iff machine is in state s at time τ ;
Pp,τ = 1 iff head is at cell p at time τ .

Write Mτ for the collection of variables corresponding to the machine’s
state at time τ , i.e. {C−t,τ , . . . ,Ct,τ , S1,τ , . . . ,Sq,τ , P−t,τ , . . . ,Pt,τ}.

We would like to write:

f (M, I⃗ , t) = [M0 ↔ Tape reads I⃗ , state is 1, head at cell 0]
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we’re done since an AND of CNFs is in CNF.

This is painful but ultimately doable!

John Lapinskas The Cook-Levin theorem 6 / 7



Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Our variables: We want: Cp,τ = contents of cell p at time τ ;
Ss,τ = 1 iff machine is in state s at time τ ;
Pp,τ = 1 iff head is at cell p at time τ .

Write Mτ for the collection of variables corresponding to the machine’s state at time τ , i.e.
{C−t,τ , . . . ,Ct,τ , S1,τ , . . . , Sq,τ , P−t,τ , . . . ,Pt,τ}.

The key point: Computer operations are local — the changes from Mτ

to Mτ+1 only depend on a few variables in Mτ !

So we check consistency with an AND of many clauses that look like:

[Pi ,τ = 1 ∧ S3,τ = 1 ∧ Ci ,τ = 0 ⇒ Ci ,τ+1 = 1]

Each such clause has only 4 variables, so it can be expressed as an
O(1)-length CNF formula. We need Θ(t) such formulae for every variable
in Mτ+1, one for each possible (position, state, cell contents) tuple, so in
total our consistency check will have length Θ(t2) and
|f (M, I⃗ , t)| ∈ Θ(t3).
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