
A non-examinable sketch proof of
the Cook-Levin theorem

COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas The Cook-Levin theorem 1 / 7

Lies, damned lies and sketch proofs

Cook-Levin Theorem: Any problem in NP is Cook-reducible to SAT.

Let X be any problem in NP, and let x⃗ be an instance of X .

Then we will construct a CNF formula Fx⃗ , of size polynomial in |x⃗ |, which
is satisfiable if and only if x⃗ is a Yes instance. Our Cook reduction then
just applies the SAT oracle to Fx⃗ and outputs the result.

By definition of NP, there is a polynomial-time algorithm Verify such
that x⃗ is a Yes instance if and only if Verify(x⃗ , w⃗) = Yes for some w⃗ . So
we would like to express the statement “Verify(x⃗ , w⃗) = Yes” as a CNF
formula in w⃗ .

Problem: We know nothing about how Verify works. So to do this, we
need to be able to express “A computer running program P on input I for
t steps outputs Yes” as a CNF formula of polynomial size...!

John Lapinskas The Cook-Levin theorem 2 / 7

Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 1 1 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas The Cook-Levin theorem 3 / 7

Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 1 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas The Cook-Levin theorem 3 / 7

Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 0 0 · · ·· · ·
Machine in state 3, head
reads 0 −→ Write 1, move
left, enter state 7.

John Lapinskas The Cook-Levin theorem 3 / 7

Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 0 1 · · ·· · ·
Machine in state 7, head
reads 0 −→ Write 1, move
left, enter state 1.

John Lapinskas The Cook-Levin theorem 3 / 7

Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 1 1 · · ·· · ·
Machine in state 1, head
reads 0 −→ Write 0, move
right, enter state 10.

John Lapinskas The Cook-Levin theorem 3 / 7

Turing machines

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

We could in principle do this for an actual computer architecture, but it
would be unspeakably awful. So let’s use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite
string of tape divided into cells containing binary values, plus a tape head.
At each time step, based on the current cell and its internal state, the tape
head writes a 1 or 0 and moves left or right along the tape, and then the
Turing machine changes state or halts. For example:

1 0 0 1 1 · · ·· · ·
Machine in state 10, head
reads 1 −→ Halt.

John Lapinskas The Cook-Levin theorem 3 / 7

Expressing computation with logic

Our goal: Given a program P, we would like a CNF formula f (P, I⃗ , t) which is satisfiable iff

running P on input I⃗ for t steps outputs Yes.

We would like to construct f (P, I⃗ , t) in time poly(I⃗ , t).

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into
cells containing binary values, plus a tape head. At each time step, based on the current cell
and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and
then the Turing machine changes state or halts.

The Church-Turing Thesis says: Any computable function is computable
using a Turing machine.

The Strong Church-Turing Thesis says: Any function computable in
polynomial time is computable in polynomial time using a Turing
machine. (Ignoring quantum computers, anyway...)

So we can take our program in the form of a Turing machine, which is
much easier to simulate!

John Lapinskas The Cook-Levin theorem 4 / 7

Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Idea: Model the entire computation from start to finish, step by step.

We will have variables:

Cp,τ to model the cell contents. We want Cp,τ = 1 if and only if cell
p contains a 1 at time τ .

Ss,τ to model which state the machine is in. We want Ss,τ = 1 if and
only if the machine is in state s at time τ .

Pp,τ to model the position of the tape head. We want Pp,τ = 1 if and
only if the tape head is at cell p at time τ .

Problem: The tape is infinite, so we need infinitely many variables!

John Lapinskas The Cook-Levin theorem 5 / 7

Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Idea: Model the entire computation from start to finish, step by step.

We will have variables:

Cp,τ to model the cell contents. We want Cp,τ = 1 if and only if cell
p contains a 1 at time τ .

Ss,τ to model which state the machine is in. We want Ss,τ = 1 if and
only if the machine is in state s at time τ .

Pp,τ to model the position of the tape head. We want Pp,τ = 1 if and
only if the tape head is at cell p at time τ .

Solution: In time t the tape head can only move t spaces, so the state of
the Turing machine is determined entirely by cells −t,−t + 1, . . . , t.
So actually we only need O(t2) variables.

John Lapinskas The Cook-Levin theorem 5 / 7

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Our variables: We want: Cp,τ = contents of cell p at time τ ;
Ss,τ = 1 iff machine is in state s at time τ ;
Pp,τ = 1 iff head is at cell p at time τ .

Write Mτ for the collection of variables corresponding to the machine’s
state at time τ , i.e. {C−t,τ , . . . ,Ct,τ , S1,τ , . . . ,Sq,τ , P−t,τ , . . . ,Pt,τ}.

We would like to write:

f (M, I⃗ , t) = [M0 ↔ Tape reads I⃗ , state is 1, head at cell 0]

∧ [M1 is derived correctly from M0]

∧ [M2 is derived correctly from M1]

...

∧ [Mt is derived correctly from Mt−1]

∧ [Mt ↔ Machine has halted with output Yes]

If we can express these as CNF statements of length polynomial in t,
we’re done since an AND of CNFs is in CNF.

This is painful but ultimately doable!

John Lapinskas The Cook-Levin theorem 6 / 7

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Our variables: We want: Cp,τ = contents of cell p at time τ ;
Ss,τ = 1 iff machine is in state s at time τ ;
Pp,τ = 1 iff head is at cell p at time τ .

Write Mτ for the collection of variables corresponding to the machine’s
state at time τ , i.e. {C−t,τ , . . . ,Ct,τ , S1,τ , . . . ,Sq,τ , P−t,τ , . . . ,Pt,τ}.

We would like to write:

f (M, I⃗ , t) = [M0 ↔ Tape reads I⃗ , state is 1, head at cell 0]

∧
t∧

τ=1

[Mτ is derived correctly from Mτ−1]

∧ [Mt ↔ Machine has halted with output Yes].

If we can express these as CNF statements of length polynomial in t,
we’re done since an AND of CNFs is in CNF.

This is painful but ultimately doable!

John Lapinskas The Cook-Levin theorem 6 / 7

Our new goal: Given a Turing machine M, we would like a CNF formula f (M, I⃗ , t) which is

satisfiable iff after running M on input I⃗ for t steps, it halts with output Yes.

We would like to construct f (M, I⃗ , t) in time poly(I⃗ , t).

Our variables: We want: Cp,τ = contents of cell p at time τ ;
Ss,τ = 1 iff machine is in state s at time τ ;
Pp,τ = 1 iff head is at cell p at time τ .

Write Mτ for the collection of variables corresponding to the machine’s state at time τ , i.e.
{C−t,τ , . . . ,Ct,τ , S1,τ , . . . , Sq,τ , P−t,τ , . . . ,Pt,τ}.

The key point: Computer operations are local — the changes from Mτ

to Mτ+1 only depend on a few variables in Mτ !

So we check consistency with an AND of many clauses that look like:

[Pi ,τ = 1 ∧ S3,τ = 1 ∧ Ci ,τ = 0 ⇒ Ci ,τ+1 = 1]

Each such clause has only 4 variables, so it can be expressed as an
O(1)-length CNF formula. We need Θ(t) such formulae for every variable
in Mτ+1, one for each possible (position, state, cell contents) tuple, so in
total our consistency check will have length Θ(t2) and
|f (M, I⃗ , t)| ∈ Θ(t3).

John Lapinskas The Cook-Levin theorem 7 / 7

