A non-examinable sketch proof of the Cook-Levin theorem COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

Lies, damned lies and sketch proofs

Cook-Levin Theorem: Any problem in NP is Cook-reducible to SAT.
Let X be any problem in NP, and let \vec{x} be an instance of X.
Then we will construct a CNF formula $F_{\vec{x}}$, of size polynomial in $|\vec{x}|$, which is satisfiable if and only if \vec{x} is a Yes instance. Our Cook reduction then just applies the SAT oracle to $F_{\vec{x}}$ and outputs the result.

By definition of NP, there is a polynomial-time algorithm Verify such that \vec{x} is a Yes instance if and only if $\operatorname{Verify}(\vec{x}, \vec{w})=$ Yes for some \vec{w}. So we would like to express the statement "Verify $(\vec{x}, \vec{w})=$ Yes" as a CNF formula in \vec{w}.

Problem: We know nothing about how Verify works. So to do this, we need to be able to express "A computer running program P on input $/$ for t steps outputs Yes" as a CNF formula of polynomial size...!

Turing machines

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t).
We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 3, head reads $1 \longrightarrow$ Write 0 , move right, enter state 3.

Turing machines

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t).
We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 3, head reads $1 \longrightarrow$ Write 0 , move right, enter state 3.

Turing machines

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t).
We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 3, head reads $0 \longrightarrow$ Write 1 , move left, enter state 7.

Turing machines

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t).
We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 7, head reads $0 \longrightarrow$ Write 1 , move left, enter state 1.

Turing machines

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t).
We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 1, head reads $0 \longrightarrow$ Write 0 , move right, enter state 10.

Turing machines

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time poly (\vec{l}, t).
We could in principle do this for an actual computer architecture, but it would be unspeakably awful. So let's use a Turing machine instead.

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts. For example:

Machine in state 10, head reads $1 \longrightarrow$ Halt.

Expressing computation with logic

Our goal: Given a program P, we would like a CNF formula $f(P, \vec{l}, t)$ which is satisfiable iff running P on input \vec{l} for t steps outputs Yes.
We would like to construct $f(P, \vec{l}, t)$ in time $\operatorname{poly}(\vec{l}, t)$.
Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into cells containing binary values, plus a tape head. At each time step, based on the current cell and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and then the Turing machine changes state or halts.

The Church-Turing Thesis says: Any computable function is computable using a Turing machine.

The Strong Church-Turing Thesis says: Any function computable in polynomial time is computable in polynomial time using a Turing machine. (Ignoring quantum computers, anyway...)

So we can take our program in the form of a Turing machine, which is much easier to simulate!

Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.
We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t).
Idea: Model the entire computation from start to finish, step by step.
We will have variables:

- $C_{p, \tau}$ to model the cell contents. We want $C_{p, \tau}=1$ if and only if cell p contains a 1 at time τ.
- $S_{s, \tau}$ to model which state the machine is in. We want $S_{s, \tau}=1$ if and only if the machine is in state s at time τ.
- $P_{p, \tau}$ to model the position of the tape head. We want $P_{p, \tau}=1$ if and only if the tape head is at cell p at time τ.
Problem: The tape is infinite, so we need infinitely many variables!

Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.
We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t).
Idea: Model the entire computation from start to finish, step by step.
We will have variables:

- $C_{p, \tau}$ to model the cell contents. We want $C_{p, \tau}=1$ if and only if cell p contains a 1 at time τ.
- $S_{s, \tau}$ to model which state the machine is in. We want $S_{s, \tau}=1$ if and only if the machine is in state s at time τ.
- $P_{p, \tau}$ to model the position of the tape head. We want $P_{p, \tau}=1$ if and only if the tape head is at cell p at time τ.
Solution: In time t the tape head can only move t spaces, so the state of the Turing machine is determined entirely by cells $-t,-t+1, \ldots, t$. So actually we only need $O\left(t^{2}\right)$ variables.

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.
We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t).
Our variables: We want: $C_{p, \tau}=$ contents of cell p at time τ;
$S_{s, \tau}=1$ iff machine is in state s at time τ;
$P_{p, \tau}=1$ iff head is at cell p at time τ.
Write \mathcal{M}_{τ} for the collection of variables corresponding to the machine's state at time τ, i.e. $\left\{C_{-t, \tau}, \ldots, C_{t, \tau}, S_{1, \tau}, \ldots, S_{q, \tau}, P_{-t, \tau}, \ldots, P_{t, \tau}\right\}$.
We would like to write:

$$
\begin{aligned}
f(M, \vec{l}, t)=[& \left.\mathcal{M}_{0} \leftrightarrow \text { Tape reads } \vec{l}, \text { state is } 1, \text { head at cell } 0\right] \\
& \wedge\left[\mathcal{M}_{1} \text { is derived correctly from } \mathcal{M}_{0}\right] \\
& \wedge\left[\mathcal{M}_{2} \text { is derived correctly from } \mathcal{M}_{1}\right]
\end{aligned}
$$

$\wedge\left[\mathcal{M}_{t}\right.$ is derived correctly from $\left.\mathcal{M}_{t-1}\right]$
$\wedge\left[\mathcal{M}_{t} \leftrightarrow\right.$ Machine has halted with output Yes]

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.
We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t).
Our variables: We want: $C_{p, \tau}=$ contents of cell p at time τ;
$S_{s, \tau}=1$ iff machine is in state s at time τ;
$P_{p, \tau}=1$ iff head is at cell p at time τ.
Write \mathcal{M}_{τ} for the collection of variables corresponding to the machine's state at time τ, i.e. $\left\{C_{-t, \tau}, \ldots, C_{t, \tau}, S_{1, \tau}, \ldots, S_{q, \tau}, P_{-t, \tau}, \ldots, P_{t, \tau}\right\}$.
We would like to write:

$$
\begin{aligned}
f(M, \vec{l}, t)=\left[\mathcal{M}_{0}\right. & \leftrightarrow \text { Tape reads } \vec{l}, \text { state is } 1, \text { head at cell } 0] \\
& \wedge \bigwedge_{\tau=1}^{t}\left[\mathcal{M}_{\tau} \text { is derived correctly from } \mathcal{M}_{\tau-1}\right] \\
& \wedge\left[\mathcal{M}_{t} \leftrightarrow \text { Machine has halted with output Yes }\right] .
\end{aligned}
$$

If we can express these as CNF statements of length polynomial in \boldsymbol{t}, we're done since an AND of CNFs is in CNF.

This is painful but ultimately doable!

Our new goal: Given a Turing machine M, we would like a CNF formula $f(M, \vec{l}, t)$ which is satisfiable iff after running M on input \vec{l} for t steps, it halts with output Yes.
We would like to construct $f(M, \vec{l}, t)$ in time poly (\vec{l}, t).
Our variables: We want: $C_{p, \tau}=$ contents of cell p at time τ;
$S_{s, \tau}=1$ iff machine is in state s at time τ;
$P_{p, \tau}=1$ iff head is at cell p at time τ.
Write \mathcal{M}_{τ} for the collection of variables corresponding to the machine's state at time τ, i.e. $\left\{C_{-t, \tau}, \ldots, C_{t, \tau}, S_{1, \tau}, \ldots, S_{q, \tau}, P_{-t, \tau}, \ldots, P_{t, \tau}\right\}$.

The key point: Computer operations are local - the changes from \mathcal{M}_{τ} to $\mathcal{M}_{\tau+1}$ only depend on a few variables in \mathcal{M}_{τ} !

So we check consistency with an AND of many clauses that look like:

$$
\left[P_{i, \tau}=1 \wedge S_{3, \tau}=1 \wedge C_{i, \tau}=0 \Rightarrow C_{i, \tau+1}=1\right]
$$

Each such clause has only 4 variables, so it can be expressed as an $O(1)$-length CNF formula. We need $\Theta(t)$ such formulae for every variable in $\mathcal{M}_{\tau+1}$, one for each possible (position, state, cell contents) tuple, so in total our consistency check will have length $\Theta\left(t^{2}\right)$ and $|f(M, \vec{l}, t)| \in \Theta\left(t^{3}\right)$.

