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Let X be any problem in NP, and let X be an instance of X.

Then we will construct a CNF formula Fg, of size polynomial in |X|, which
is satisfiable if and only if X is a Yes instance. Our Cook reduction then
just applies the SAT oracle to Fz and outputs the result.

By definition of NP, there is a polynomial-time algorithm Verify such
that X is a Yes instance if and only if Verify(x, w) = Yes for some w. So
we would like to express the statement “Verify(x, w) = Yes" as a CNF
formula in w.

Problem: We know nothing about how Verify works. So to do this, we
need to be able to express “A computer running program P on input / for
t steps outputs Yes” as a CNF formula of polynomial size...!
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Turing machines

Our goal: Given a program P, we would like a CNF formula f(P, F, t) which is satisfiable iff
running P on input I for t steps outputs Yes.

We would like to construct f(P, 1, t) in time poly(/, t).
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Expressing computation with logic

Our goal: Given a program P, we would like a CNF formula f(P, F, t) which is satisfiable iff
running P on input I for t steps outputs Yes.

We would like to construct f(P, T, t) in time pon(r, t).

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into
cells containing binary values, plus a tape head. At each time step, based on the current cell
and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and
then the Turing machine changes state or halts.
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Our goal: Given a program P, we would like a CNF formula f(P, F, t) which is satisfiable iff
running P on input I for t steps outputs Yes.

We would like to construct f(P, T, t) in time pon(r, t).

Recall from COMS11700: A Turing machine is a two-sided infinite string of tape divided into
cells containing binary values, plus a tape head. At each time step, based on the current cell
and its internal state, the tape head writes a 1 or 0 and moves left or right along the tape, and
then the Turing machine changes state or halts.

The Church-Turing Thesis says: Any computable function is computable
using a Turing machine.

The Strong Church-Turing Thesis says: Any function computable in
polynomial time is computable in polynomial time using a Turing
machine. (Ignoring quantum computers, anyway...)

So we can take our program in the form of a Turing machine, which is
much easier to simulate!
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Expressing computation with logic

Our new goal: Given a Turing machine M, we would like a CNF formula £(M, I, t) which is
satisfiable iff after running M on input [fort steps, it halts with output Yes.

We would like to construct f(M, I, t) in time poly(/, t).

Idea: Model the entire computation from start to finish, step by step.
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only if the machine is in state s at time 7.
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only if the tape head is at cell p at time 7.

Problem: The tape is infinite, so we need infinitely many variables!
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Idea: Model the entire computation from start to finish, step by step.

We will have variables:

@ C, . to model the cell contents. We want C, . = 1 if and only if cell
p contains a 1 at time 7.

@ S, ; to model which state the machine is in. We want S, - =1 if and
only if the machine is in state s at time 7.

@ P, to model the position of the tape head. We want P, . =1 if and
only if the tape head is at cell p at time 7.

Solution: In time t the tape head can only move t spaces, so the state of
the Turing machine is determined entirely by cells —t, —t +1,...,t.
So actually we only need O(t?) variables.
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Our new goal: Given a Turing machine M, we would like a CNF formula (M, F, t) which is
satisfiable iff after running M on input I for t steps, it halts with output Yes.

We would like to construct f(M, F, t) in time poly(r, t).

Our variables: We want: Cp, + = contents of cell p at time 7;
Ss,~ = 1 iff machine is in state s at time 7;
Pp,r = 1 iff head is at cell p at time 7.
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The key point: Computer operations are local — the changes from M.,
to M1 only depend on a few variables in M !
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So we check consistency with an AND of many clauses that look like:
[P,"T =1A 53,7- =1A C,"T =0= C,',T+1 = 1]

Each such clause has only 4 variables, so it can be expressed as an

O(1)-length CNF formula. We need ©(t) such formulae for every variable
in M1, one for each possible (position, state, cell contents) tuple, so in

total our consistency check will have length ©(t?) and

IF(M, I, t)| € ©(t3). O
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