
NP versus Co-NP
COMS20010 (Algorithms II)

John Lapinskas, University of Bristol

John Lapinskas NP versus Co-NP 1 / 7

The asymmetry of NP

Given a decision problem X , we write X for its complement:
Yes instances of X are No instances of X and vice versa.

For example, SAT asks: Is the input CNF formula unsatisfiable?

X and X are always equivalent under Cook reductions; we just apply our
oracle and invert the answer. So they’re equally hard to solve.

But despite this, X ∈ NP does not imply X ∈ NP, because membership of
NP requires that Yes instances have witnesses.

We can verify that a CNF formula is satisfiable by checking a satisfying
assignment, so SAT ∈ NP. But how do we verify that it’s unsatisfiable?
We’d need a short logical proof (i.e. one of polynomial length).

Conjecture: In general, this isn’t possible. If it were, it wouldn’t mean
much for algorithms, but it would be a revolution in mathematics.

John Lapinskas NP versus Co-NP 2 / 7

Given a decision problem X , we write X for its complement:
Yes instances of X are No instances of X and vice versa.

Having an algorithm for X gives you an algorithm for X and vice versa.

We define Co-NP to be the set of decision problems whose complements
are in NP, such as SAT.

Conjecture: NP ̸= Co-NP.
P = NP would imply P = Co-NP, so this conjecture implies P ̸= NP.

Cook reductions are useless here, since every problem in NP reduces
to SAT and every problem in Co-NP reduces to SAT.

We need a notion of reduction that can make finer distinctions and tell the
two complexity classes apart...

John Lapinskas NP versus Co-NP 3 / 7

Given a decision problem X , we write X for its complement:
Yes instances of X are No instances of X and vice versa.

Having an algorithm for X gives you an algorithm for X and vice versa.

Conjecture: NP ̸= Co-NP.
Cook reductions don’t help with this, so we need something new...

If X and Y are decision problems, a Karp reduction from X to Y is a
map f from instances of X to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

We write X ≤K Y .

Intuitively: X ≤C Y means “X is no harder than Y ”.
X ≤K Y means “X is a special case of Y .”

Karp reductions are stronger than Cook reductions; X ≤K Y ⇒ X ≤c Y ,
since we can apply our oracle to f (x), but the reverse doesn’t hold.

John Lapinskas NP versus Co-NP 4 / 7

Given a decision problem X , we write X for its complement:
Yes instances of X are No instances of X and vice versa.

We define Co-NP = {X : X ∈ NP}.
Conjecture: NP ̸= Co-NP. This would imply P ̸= NP.

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

As with Cook reductions, we say a decision problem Y is NP-hard under
Karp reductions if X ≤K Y for all X ∈ NP.

Y is NP-complete under Karp reductions if it is also in NP.

The same definitions work for Co-NP...

John Lapinskas NP versus Co-NP 5 / 7

Given a decision problem X , we write X for its complement:
Yes instances of X are No instances of X and vice versa.

We define Co-NP = {X : X ∈ NP}.
Conjecture: NP ̸= Co-NP. This would imply P ̸= NP.

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

As with Cook reductions, we say a decision problem Y is Co-NP-hard
under Karp reductions if X ≤K Y for all X ∈ Co-NP.

Y is Co-NP-complete under Karp reductions if it is also in Co-NP.

The proof of Cook-Levin implies SAT is NP-complete under Karp reductions,
and SAT is Co-NP-complete under Karp reductions.

John Lapinskas NP versus Co-NP 5 / 7

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

The good news: Every Cook reduction we’ve seen has also been Karp!

For SAT ≤C 3-SAT, we built a 3-SAT instance with the same answer as the
SAT instance...

F = u ∧ (¬u ∨ ¬v) ∧ (v ∨ ¬w ∨ x ∨ ¬y ∨ ¬z) ∧ (y ∨ z) ∧ (¬v ∨ w ∨ z)

F ′ = (u ∨ f1 ∨ f2) ∧ (¬u ∨ ¬v ∨ f1) ∧ (e1 ∨ ¬v ∨ f1) ∧ (e1 ∨ w ∨ f1) ∧ (¬e1 ∨ v ∨ ¬w)

∧ (e2 ∨ ¬e1 ∨ f1) ∧ (e2 ∨ ¬x) ∧ (¬e2 ∨ e1 ∨ x) ∧ (e3 ∨ ¬e2 ∨ f1) ∧ (e3 ∨ y ∨ f1) ∨ (¬e3 ∨ e2 ∨ ¬y)
∧ (e3 ∨ ¬z ∨ f1) ∧ (y ∨ z ∨ f1) ∧ (¬v ∨ w ∨ z) ∧ (¬f1 ∨ a1 ∨ a2) ∧ (¬f1 ∨ a1 ∨ ¬a2) ∧ (¬f1 ∨ ¬a1 ∨ a2)

∧ (¬f1 ∨ ¬a1 ∨ ¬a2) ∧ (¬f2 ∨ a1 ∨ a2) ∧ (¬f2 ∨ a1 ∨ ¬a2) ∧ (¬f2 ∨ ¬a1 ∨ a2) ∧ (¬f2 ∨ ¬a1 ∨ ¬a2).

John Lapinskas NP versus Co-NP 6 / 7

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

The good news: Every Cook reduction we’ve seen has also been Karp!

For 3-SAT ≤C IS, we built an independent set instance with the same
answer as our 3-SAT instance...

F = (x ∨ ¬y ∨ z) ∧ (w ∨ ¬x ∨ ¬z)

w False w True x False x True y False y True z False z True

x True

¬y True

z True w True

¬x True

¬z True

John Lapinskas NP versus Co-NP 6 / 7

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

The good news: Every Cook reduction we’ve seen has also been Karp!

For IS ≤C VC, we built a vertex cover instance with the same answer as our
independent set instance...

(G , k) −→ (G , |V | − k).

John Lapinskas NP versus Co-NP 6 / 7

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

The good news: Every Cook reduction we’ve seen has also been Karp!

And for VC ≤C ILP, we built an integer linear programming instance with
the same answer as our vertex cover instance.

1

2

3

4 5

6

7

8 ∑
vxv → min subject to

xu + xv ≥ 1 for all {u, v} ∈ E ;

xv ≤ 1 for all v ∈ V ;

xv ≥ 0 for all v ∈ V ;

xv ∈ N for all v ∈ V .

John Lapinskas NP versus Co-NP 6 / 7

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

The good news: Every Cook reduction we’ve seen has also been Karp!

The bad news: NP-completeness and NP-hardness are different concepts
under Cook reductions than under Karp reductions.

Only decision problems can be NP-hard under Karp reductions, but all prob-
lems can be NP-hard under Cook reductions.

And we believe there are problems which are NP-complete under Cook
reductions but not under Karp reductions.

The worse news: Different people use different definitions. Complexity
theorists use Karp reductions, programmers use Cook reductions. And both
groups usually just say “NP-hard” or “NP-complete”.

In this course: If I don’t give more detail, “NP-complete” means under
Karp reductions, and “NP-hard” means under Cook reductions.

John Lapinskas NP versus Co-NP 6 / 7

We write X ≤K Y if there is a Karp reduction from X to Y , i.e. a map f from instances of X
to instances of Y such that:

we can compute f (x) in time polynomial in |x |;
f (x) is a Yes instance of Y if and only if x is a Yes instance of X .

The slightly better news: Almost every NP-complete problem is
NP-complete under both Cook and Karp reductions. So thinking only in
terms of Karp reductions still saves effort without really sacrificing power.

You can skip trying to come up with an algorithm and move straight to
coming up with gadgets, trying to simulate aspects of one problem using
the other.

And in areas where Karp-unfriendly reduction techniques are more
common (e.g. counting problems), everyone just uses Cook reductions,
even the pure theorists.

John Lapinskas NP versus Co-NP 7 / 7

