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Dealing with NP-hard problems

Sadly, knowing that a problem is NP-hard doesn’t make it go away...

So
what are your options from that point?

Option 1: Prove P = NP.
Problem: Not going to happen.

Option 2: Quit your job and become a computer science lecturer,
so you never have to write code again.

Problem: Writing proofs is harder than writing code...

Option 3: Wait for a quantum computer and use that.
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Option 3: Wait for a quantum computer and use that.

Problem: The media has lied to you about quantum computers!
They can’t just “check all possible witnesses in parallel”.

If we can build quantum computers, they will be good for two things:

Breaking public-key cryptography with e.g. fast prime factorisation;

Simulating quantum systems.

That’s still very useful for e.g. drug discovery! But it’s not solving SAT.
There’s no reason to think your home PC will ever need a “quantum chip”.
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The problem is: suppose you form a superposition of every possible
witness, and you run the verifier on all of them at once.

Suppose there are 2n possible witnesses, and only one actual witness.

Then your output will be a quantum state which, when you measure it,
gives No with probability 1− 2−n and Yes with probability 2−n.
And measuring the state destroys it.

There’s provably no way to distinguish this state from a pure “No” with
any reasonable probability.

(Maths with CS students: see the quantum courses in year 4!)

Most quantum computing researchers are pretty sure that quantum
computers can’t solve NP-complete problems in polynomial time.

The best evidence for quantum computers being more powerful than
classical computers is that they can factor large numbers quickly.

But the evidence this is a hard problem is much weaker than e.g. P ̸= NP.
It’s in NP ∩ Co-NP, and some people do think this is contained in P...

John Lapinskas Dealing with NP-hard problems 4 / 10



The problem is: suppose you form a superposition of every possible
witness, and you run the verifier on all of them at once.

Suppose there are 2n possible witnesses, and only one actual witness.

Then your output will be a quantum state which, when you measure it,
gives No with probability 1− 2−n and Yes with probability 2−n.
And measuring the state destroys it.

There’s provably no way to distinguish this state from a pure “No” with
any reasonable probability.

(Maths with CS students: see the quantum courses in year 4!)

Most quantum computing researchers are pretty sure that quantum
computers can’t solve NP-complete problems in polynomial time.

The best evidence for quantum computers being more powerful than
classical computers is that they can factor large numbers quickly.

But the evidence this is a hard problem is much weaker than e.g. P ̸= NP.
It’s in NP ∩ Co-NP, and some people do think this is contained in P...

John Lapinskas Dealing with NP-hard problems 4 / 10



The problem is: suppose you form a superposition of every possible
witness, and you run the verifier on all of them at once.

Suppose there are 2n possible witnesses, and only one actual witness.

Then your output will be a quantum state which, when you measure it,
gives No with probability 1− 2−n and Yes with probability 2−n.
And measuring the state destroys it.

There’s provably no way to distinguish this state from a pure “No” with
any reasonable probability.

(Maths with CS students: see the quantum courses in year 4!)

Most quantum computing researchers are pretty sure that quantum
computers can’t solve NP-complete problems in polynomial time.

The best evidence for quantum computers being more powerful than
classical computers is that they can factor large numbers quickly.

But the evidence this is a hard problem is much weaker than e.g. P ̸= NP.
It’s in NP ∩ Co-NP, and some people do think this is contained in P...

John Lapinskas Dealing with NP-hard problems 4 / 10



The problem is: suppose you form a superposition of every possible
witness, and you run the verifier on all of them at once.

Suppose there are 2n possible witnesses, and only one actual witness.

Then your output will be a quantum state which, when you measure it,
gives No with probability 1− 2−n and Yes with probability 2−n.
And measuring the state destroys it.

There’s provably no way to distinguish this state from a pure “No” with
any reasonable probability.

(Maths with CS students: see the quantum courses in year 4!)

Most quantum computing researchers are pretty sure that quantum
computers can’t solve NP-complete problems in polynomial time.

The best evidence for quantum computers being more powerful than
classical computers is that they can factor large numbers quickly.

But the evidence this is a hard problem is much weaker than e.g. P ̸= NP.
It’s in NP ∩ Co-NP, and some people do think this is contained in P...

John Lapinskas Dealing with NP-hard problems 4 / 10



The problem is: suppose you form a superposition of every possible
witness, and you run the verifier on all of them at once.

Suppose there are 2n possible witnesses, and only one actual witness.

Then your output will be a quantum state which, when you measure it,
gives No with probability 1− 2−n and Yes with probability 2−n.
And measuring the state destroys it.

There’s provably no way to distinguish this state from a pure “No” with
any reasonable probability.

(Maths with CS students: see the quantum courses in year 4!)

Most quantum computing researchers are pretty sure that quantum
computers can’t solve NP-complete problems in polynomial time.

The best evidence for quantum computers being more powerful than
classical computers is that they can factor large numbers quickly.

But the evidence this is a hard problem is much weaker than e.g. P ̸= NP.
It’s in NP ∩ Co-NP, and some people do think this is contained in P...

John Lapinskas Dealing with NP-hard problems 4 / 10



Option 4: Try to solve the problem approximately.

For example, it’s NP-hard to find a minimum vertex cover, but we already
set out an algorithm that finds a vertex cover which is minimum to within
a factor of 2.

(See Advanced Algorithms next year for much more on these!)

Problem: There might not be a fast approximation algorithm either.

For example, it’s NP-hard to approximate vertex cover to within a factor
of 1.36, and it’s “UGC-hard” to approximate it to within a factor of 2− ε
for any ε > 0. (So our algorithm is probably best possible.)

And it’s NP-hard to approximate independent set even to within a factor
of n0.9999 on an n-vertex graph. (You can approximate it to within a factor
of n by outputting a single vertex, so that’s not great...)
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Option 5: Look for exploitable properties of your specific input.

For example: It’s NP-hard to find a size-k independent set in a graph.

Even if k is a constant, you (almost certainly) need nΩ(k) time where n is
the number of vertices in the input graph.

But if k is constant and your input graphs all have maximum degree at
most 100 (say), then you can do it in O(n) time!

Sample questions to ask yourself for graph problems:

Do my input graphs have few edges?

Do my input graphs have low maximum degree?

Are my input graphs close to trees?

Can I assume my input graphs follow some random distribution?

One very useful concept that can often be exploited is low treewidth.
The definition is too complicated for this course, but if your graph can be
split into two by removing only a few vertices, and then you can continue
the process recursively, then it probably has low treewidth.
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A lot of useful restrictions to the input are of the form “this parameter is
low”, such as low maximum degree, low average degree, few cycles, or low
treewidth. These are called parameterised problems.

How should we define efficiency for them? If our input is an n-vertex
graph with maximum degree ∆, it’s not very useful if our algorithm takes
time n∆, even though that’s polynomial for fixed ∆.

Idea: We want there to be some constant C such that the running time is
O(nC ) for all fixed ∆. The leading constant will get worse as ∆ increases,
but not the exponent C .

Equivalently: We require the running time to be at most g(∆) · nC for
some computable function g . (Ideally we want g(∆) = 2O(∆) or ∆O(∆).)

We call problems with algorithms like this fixed-parameter tractable
(FPT). The analogue of NP-hardness in this setting is W[1]-hardness.

These can be useful search terms when looking for practical algorithms!
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Option 6: Try something slower than polynomial time.

Many NP-complete problems have subexponential-time algorithms!

A graph is planar if it can be drawn without any two edges overlapping.

This graph is planar...

because it can be drawn

like this.

But these graphs are not planar.

(In some sense they’re the

only ones that aren’t...)

Planar graphs are often used to model physical locations, with edges
between neighbouring locations.
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Many NP-complete problems have subexponential-time algorithms!

A graph is planar if it can be drawn without any two edges overlapping.

Planar graphs are often used to model physical locations, with edges between neighbouring
locations.

Many problems, including independent set, are still NP-complete on planar
input graphs. But they have 2O(

√
n)-time algorithms!

(This is because n-vertex planar graphs have O(
√
n) treewidth.)

Problem: Again, this is often impossible. The Exponential Time
Hypothesis (ETH) says that an n-variable instance of 3-SAT can’t be
solved in 2o(n) time. There’s no subexponential-time algorithm for
independent set on arbitrary graphs unless ETH is false.

Of course, if your instances are of size 15–20 you can just use brute force...
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Planar graphs are often used to model physical locations, with edges between neighbouring
locations.

Many problems, including independent set, are still NP-complete on planar
input graphs. But they have 2O(

√
n)-time algorithms!

(This is because n-vertex planar graphs have O(
√
n) treewidth.)
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Option 6b: Try a modern SAT-solver.

Under ETH, this will take 2Ω(n) time to solve an instance with n variables.
So it’s not going to be practical on e.g. a 200-variable instance.

Modern SAT-solvers can often handle tens of thousands of variables!

Clearly “real-world SAT instances” often have some nice properties that
solvers are exploiting... but we can’t nail down what those properties are.
This is a huge open problem right now.

So just give it a try! It might not work, but it’s worth checking.
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